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a b s t r a c t 

The course of attention deficit hyperactivity disorder (ADHD) from adolescence into adulthood shows large vari- 

ations between individuals; nonetheless determinants of interindividual differences in the course are not well 

understood. A frequent problem in ADHD, associated with worse outcomes, is emotion dysregulation. We in- 

vestigated whether emotion dysregulation and integration of emotion-related functional brain networks affect 

interindividual differences in ADHD severity change. ADHD severity and resting state neuroimaging data were 

measured in ADHD and unaffected individuals at two points during adolescence and young adulthood. Bivariate 

latent change score models were applied to investigate whether emotion dysregulation and network integration 

affect ADHD severity changes. Emotion dysregulation was gauged from questionnaire subscales for conduct prob- 

lems, emotional problems and emotional lability. Better emotion regulation was associated with a better course 

of ADHD (104 participants, 44 females, age range: 12–27). Using graph analysis, we determined network inte- 

gration of emotion-related functional brain networks. Network integration was measured by nodal efficiency, 

i.e., the average inverse path distance from one node to all other nodes. A pattern of low nodal efficiency of 

cortical regions associated with emotion processing and high nodal efficiency in subcortical areas and cortical 

areas involved in implicit emotion regulation predicted a better ADHD course. Larger nodal efficiency of the 

right orbitofrontal cortex was related to a better course of ADHD (99 participants, 42 females, age range: 10–29). 

We demonstrated that neural and behavioral covariates associated with emotion regulation affect the course of 

ADHD severity throughout adolescence and early adulthood beyond baseline effects of ADHD severity. 
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. Introduction 

The course of attention deficit/hyperactivity disorder (ADHD) in

oung adulthood differs strongly between individuals. While many in-

ividuals with ADHD show no or only mild symptoms in young adult-
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ood, others show a high level of persistence ( Biederman et al., 2011 ).

ariables that account for interindividual differences in the develop-

ent of ADHD are not well understood, but there is strong evidence

hat the ability to regulate emotions is one key factor of individual

hanges ( Sudre et al., 2020 ). Whereas emotion processing refers to the

rocess of assigning an emotional value towards a perceived stimulus,

ither positive or negative, emotion regulation describes starting, stop-

ing, or modulating the trajectory of emotions to reach individual goals
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e  
 Etkin et al., 2015 ). Dysregulation of emotion belongs to the most fre-

uently observed co-occurring problems in ADHD ( Shaw et al., 2014 )

nd its presence in ADHD is associated with significant reductions in

uality of life ( Bunford et al., 2015 ; Riley et al., 2006 ; Wehmeier et al.,

010 ). The prevalence of ADHD decreases with age from approximately

1.4% in elementary school-aged children to 5.0% in young adults

 Polanczyk et al., 2014 ; Willcutt, 2012 ). In contrast, the proportion

f individuals with ADHD affected by emotion dysregulation increases

rom around 25–45% in childhood to 30–70% in young adulthood

 Shaw et al., 2014 ). Clinical studies comparing categorical ADHD tra-

ectories confirmed that emotion dysregulation, beside other variables

ike conduct problems, anxiety and depression, significantly relates to

ersistent ADHD ( Caye et al., 2016 ; Sasser et al., 2016 ). 

On neural level, several brain imaging studies support that ADHD is

 heterogeneous disorder in which alterations are not limited to neu-

al circuits of cognitive control. They also comprise structures associ-

ted with emotion processing and implicit (i.e., automatized and non-

olitional) emotion regulation ( Posner et al., 2014 ; Rubia, 2011 ) that is

erformed without conscious monitoring or awareness (e.g., inhibition

f fear) ( Etkin et al., 2015 ). Accordingly, altered functional connectivity

n persons with ADHD is commonly found in the ventromedial prefrontal

ortex, orbitofrontal cortex, frontal pole, amygdala, and ventral striatum

 Bos et al., 2017 ; Costa Dias et al., 2013 ; Ho et al., 2015 ; Posner et al.,

013 ). Studies on ADHD using graph theory-based methods found alter-

tions of brain network topology in medial and orbital prefrontal regions

 Lin et al., 2014 ; L. Wang et al., 2009 ). In childhood ADHD, emotion dys-

egulation was shown to be correlated with functional connectivity of

he amygdala, anterior cingulate, and insula ( Hulvershorn et al., 2014 ;

u et al., 2016 ). Moreover, task-based fMRI research using emotion per-

eption and processing tasks in ADHD found evidence for abnormalities

n the amygdala and insula ( Brotman et al., 2010 ; Herpertz et al., 2008 ),

hile implicit emotion regulation in ADHD, investigated with fear ex-

inction via habituation or emotional Stroop paradigms, was shown to

e characterized by differences in the ventral anterior cingulate and ven-

romedial prefrontal cortex ( Materna et al., 2019 ; Posner et al., 2011 ;

pencer et al., 2017 ). In summary, there is strong evidence that brain

egions involved in emotion processing and implicit emotion regulation

trongly deviate in subjects with ADHD. Following this line of evidence,

e focused on functional brain network topology of brain regions in-

olved in emotion processing and implicit emotion regulation rather

han areas commonly associated with top-down processes of cognitive

ontrol. 

Despite the strong evidence that brain regions involved in emotion

rocessing differ in subjects with ADHD, little is known on the co-

ariates that predict the course of ADHD. Previous studies compared

eural activation between young adult groups with different categori-

al trajectories of prior ADHD diagnoses (e.g., remittent vs. persistent

DHD) ( Shaw and Sudre, 2021 ). Those studies revealed that persis-

ent ADHD is associated with atypical frontoparietal activity, i.e., ac-

ivity of neural circuits associated with cognitive control ( Francx et al.,

015 ; Schulz et al., 2017 ; Szekely et al., 2017 ). Structural abnormali-

ies in cognitive control networks, but also in regions associated with

motion regulation were found to be associated with persistent ADHD

 Shaw et al., 2013 , 2015 ). By comparing individuals with different

DHD outcomes, it has been further shown that adults with persistent

DHD, but not remittent ADHD, exhibit abnormal functional connec-

ivity in the default mode network, a network related to self-referential

rocessing and emotion regulation ( Mattfeld et al., 2014 ; Sudre et al.,

017 ). However, since most studies only examined brain activity at an

dult age, they do not inform on whether respective differences ex-

sted previously ( Mattfeld et al., 2014 ; Sudre et al., 2017 ). Hence, to

ur knowledge previous studies did not collect neural data at baseline

o predict the course of ADHD. We here consider functional imaging

ata measured at baseline to examine how it affects interindividual dif-

erences in the change of ADHD severity. In contrast to previous stud-

es, which categorically defined ADHD trajectory, we here investigated
2 
DHD severity as continuous variable and modelled interindividual dif-

erences in the intraindividual change of ADHD to better gage individual

hanges. 

Here, we examined the relationship of baseline emotion dysreg-

lation and functional brain network topology of regions associated

ith emotion processing and implicit dysregulation with interindivid-

al differences in the change of ADHD severity measured at two time-

oints, in late adolescence and after about four years in early adulthood.

esting-state fMRI data was obtained at the same two time points as

he ADHD severity information and analyzed using graph theory. Func-

ional graphs were constructed considering functional connectivity of

rain regions associated with both emotion dysregulation and ADHD.

e focused on nodal efficiency, a parameter that describes how well a

ode is integrated within a network. Reduced efficiency (nodal as well

s global) of functional brain networks has been associated with deficits

n a wide variety of processes and is found in neurological, as well

s psychiatric disorders ( Achard and Bullmore, 2007 ; Cai et al., 2020 ;

a et al., 2018 ; Rocca et al., 2016 ; Shim et al., 2018 ; Y. Wang et al.,

018 ). Deficits in efficiency were also related to emotion dysregula-

ion and ADHD ( Chen et al., 2019 ; Lin et al., 2014 ; Pan et al., 2018 ;

. Wang et al., 2009 ). 

In order to analyze early indicators of later change in ADHD sever-

ty, we used latent change score models. As recently proposed, they

llow modeling of the impact of continuous covariates on intraindi-

idual changes during development ( Kievit et al., 2018 ). In a first la-

ent change score model, we investigated emotion-related and ADHD

everity data aiming to explore whether emotion dysregulation predicts

hanges in ADHD severity approximately three to four years later. In

 second model, using neural data, we assessed the efficiency of brain

etworks involved in emotion regulation and investigated possible un-

erlying neural mechanisms of between–person differences in intrain-

ividual ADHD courses. We hypothesized that both increased baseline

motion dysregulation and reduced baseline nodal efficiency of brain

egions associated with emotion processing and emotion regulation neg-

tively affect the course of ADHD. 

. Materials and methods 

.1. Participants and procedures 

The present data were taken from NeuroIMAGE I and II, the second

nd third wave of an integrated-cognition-MRI-phenotype project on

DHD ( von Rhein et al., 2015 ). No fMRI data were collected during the

rst wave, which was part of the International Multicenter ADHD Genet-

cs study (IMAGE). Thus, data were taken from a well-established ADHD

ohort. Previous studies investigating this data set already documented

eural correlates of ADHD and associated problems like cognitive dys-

unctions ( Duan et al., 2018 ; Hoogman et al., 2019 ; Pruim et al., 2019 ).

or instance, prior results suggest that cognitive dysfunctions (i.e., de-

reased working memory performance) in ADHD are mediated by infe-

ior fronto-striato-cerebellar networks ( Duan et al., 2018 ). In the follow-

ng, the second and third wave are referred to as T1 and T2. Initially,

ndividuals with combined presentation ADHD and unaffected individu-

ls were recruited. For 244 individuals, phenotypical data was collected

t both time points. A purely phenotypical analysis was performed on

04 (females: 44, average age at T1: 16.53, average age at T2: 20.09)

f the 244 participants, for whom all required questionnaire data was

vailable ( Section 2.4 ). From 119 of the 244 participants, resting-state

MRI (rs-fMRI) data was acquired at T1 and T2. Of those 119 partici-

ants, 10 were excluded from rs-fMRI analysis due to left-handedness,

s differences between left- and right-handed individuals exist in ADHD

revalence ( Simões et al., 2017 ). Another 10 participants were excluded

ue to excessive movement in the scanner (root mean squared framewise

isplacement > 0.25). Thus, the current rs-fMRI analysis ( Sections 2.3

nd 2.4 ) was conducted on a sample of 99 individuals (females: 42, av-

rage age at T1: 17.22, average age at T2: 20.97). 58 individuals were
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art of both the phenotypic and neuroimaging sample. Further sample

haracteristics are summarized in Section 3.1 and supplementary table

1. 

All diagnostic and phenotypic data were acquired at the dates of

he fMRI data collection. ADHD diagnoses were reassessed by com-

ining information from the Kiddie Schedule for Affective Disorders

K-SADS) ( Kaufman et al., 1997 ) and parent, teacher, and self-report

ersions of Conners’ rating scale (CPRS-R:L, CTRS-R:L, & CAARS-R:L)

 Conners et al., 1999 ; Conners et al., 1998a , 1998b ). A combined symp-

om count derived from the K-SADS and the different versions of Con-

ers’ rating scale ( von Rhein et al., 2015 ) was used as an indicator for

DHD severity. Here, the CTRS-R:L was used for individuals under 18

ears of age, while the CAARS-S:L was used for individuals over 18. K-

ADS and Conners’ rating scales provide DSM-IV-based definitions of

DHD symptoms. If a symptom was present in at least one of them, it

ounted towards the final symptom sum score with one point. Emotion

ysregulation was gauged as a linear combination of three questionnaire

ubscales. These subscales are the emotional lability subscale of CPRS-

:L (three items for unpredictable mood changes, temper tantrums, and

earfulness) and the emotional problem (five items for anxieties, wor-

ies, happiness, and physical symptoms of emotional stress) and conduct

roblem (five items for temper tantrums, compliance, quarrelsomeness,

tealing, and lying) subscales of the Strengths and Difficulties Question-

aire (SDQ) ( van Widenfelt, Goedhart, Treffers, and Goodman, 2003 ).

or a detailed description of the diagnostic procedures, the creation of

he combined symptom counts and the initial recruitment we refer to

hein et al. (2015). 

Forty-eight hours prior to testing, stimulant medication use was dis-

ontinued. Data acquisition took place at the Donders Institute for Cog-

itive Neuroimaging, Radboud University Nijmegen, Netherlands. Par-

icipants (and their parents when < 18 years old) gave written informed

onsent for participation. Ethical approval was granted by the regional

thics board (Centrale Commissie Mensgebonden Onderzoek: CMO Re-

io Arnhem Nijmegen, ABR: NL41950.091.12). The data is stored in the

onders Institute for Cognitive Neuroimaging and may be requested via

he corresponding author. 

.2. Resting-state fMRI data acquisition and preprocessing 

Identical scanning protocols were used for NeuroIMAGE I and

I. Imaging was performed on a 1.5 T Magnetom Avanto (Siemens

G, Erlangen, Germany). BOLD-sensitive resting-state functional vol-

mes were acquired using a T2 ∗ -weighted EPI sequence (TR = 1960 ms,

E = 40 ms). Each of the 266 vol consisted of 37 axial slices

f size 64 ×64 (flip angle = 80°, FoV = 224 ×224 mm2, voxel-

ize = 3.5 × 3.5 × 3.0 mm3, inter-slice gap = 0.5 mm). T1-weighted

igh-resolution structural volumes were acquired with an MPRAGE

equence (TR = 2730 ms, TE = 2.95 ms, TI = 900 ms, flip an-

le = 9°, FoV = 256 ×256 mm2, voxel- size = 1.0 × 1.0 × 1,0 mm3,

RAPPA 2). Root mean squared framewise displacement was calcu-

ated (mean = 0.071, SD = 0.040). A threshold of 0.25 was applied to

xclude 10 participants with extreme movement at either T1 or T2

rom further analysis. Using a linear mixed effects model with sub-

ects as random effects, it was tested whether root mean squared frame-

ise displacement significantly depends on age, nodal efficiency mea-

ures (principal component scores) or the diagnostic status. Type II/III

ald F-tests were conducted. None of the investigated variables showed

 significant impact (age: F (1, 156.69) = 0.074, p = 0.787; diagno-

is(categorical): F (2, 146.03) = 1.085, p = .341; nodal efficiency: F (1,

91.85) = 1.632, p = .203). We therefore assume that to a large extent

otion effects did not influence the results of our analysis to a large

xtent. 

Preprocessing was mainly conducted using FSL FMRIB algorithms

FSL 5.0.11) ( Jenkinson et al., 2012 ). After dropping the first five scans

f the resting-state time series, the images were skull stripped, realigned

o the middle volume of the series, and co-registered to the structural T1.
3 
CA-AROMA was applied to account for motion artefacts ( Pruim et al.,

015 ). In addition, nuisance signal was reduced by regressing out the

verage BOLD time courses of the white matter and cerebrospinal fluid,

nd the linear trend. High-pass filtering was conducted at 0.01 Hz. Fi-

ally, the data was warped into MNI152 space (Montreal Neurological

nstitute, Montreal, Canada). 

.3. Graph analysis 

Python 3.5 with NetworkX ( Hagberg et al., 2008 ) was used for graph

nalysis. Parcellation of preprocessed time series data was realized us-

ng a hemisphere-specific functional brain template with 268 parcels

 Finn et al., 2015 ; Shen et al., 2013 ). This atlas was chosen as it was

reated using a graph-theoretically based parcellation approach that

nsures functional homogeneity within the parcels of the atlas. To en-

ure that the analysis yields similar results regardless of the parcella-

ion scheme selected, the analysis described below was additionally per-

ormed using an alternative brain template with 246 functionally ho-

ogenous nodes ( Fan et al., 2016 ). 

Emotion network extraction. The current study aimed to relate changes

n ADHD severity with network integration of brain nodes involved

n emotion dysregulation. Hence, 48 parcels of the selected template

ere chosen that overlapped with the orbitofrontal cortex, ventrome-

ial prefrontal cortex, anterior cingulate cortex, insula, ventral stria-

um, amygdala, and hippocampus as defined by the Harvard-Oxford

rain Atlas by more than 30%. These brain regions have been previously

hown to be involved in emotion processing, its implicit regulation,

nd brain dysfunctions in ADHD ( Materna et al., 2019 ; Rubia, 2018 ;

haw et al., 2014 ). The focus here is not on structures that achieve emo-

ion regulation via cognitive control and reappraisal (e.g., frontostriatal

etwork), but rather on those that are related to emotion processing

nd implicit emotion regulation ( Etkin et al., 2015 ). All subsequent rs-

MRI analyses including the calculation of nodal efficiency measures

escribed below were performed on the functional connectivity of these

8 nodes. 

Graph construction. Subject-specific average BOLD time series were

alculated for each of the 48 parcels. Correlation matrices were created

y computing pairwise Pearson’s correlations between the extracted

ime series. The matrices were Fisher’s Z -transformed and transformed

nto absolute values as negative correlations are also thought to be func-

ionally relevant ( Hallquist and Hillary, 2019 ). Due to the relatively low

umber of negative correlations (22.1% of all edges), we refrained from

erforming specific analysis for positive and negative correlations. To

istinguish differences in network density from those of network topol-

gy ( Ginestet et al., 2011 ), the matrices were binarized based on eight

qually spaced density thresholds with a minimum density of 0.10 and

 maximum density of 0.45 ( Achard and Bullmore, 2007 ). In this range

f low to medium network densities, previous studies found significant

ssociations between network topology and ADHD symptoms ( Lin et al.,

014 ; L. Wang et al., 2009 ). Thus, for each of the binarized matrices a

ensity-specific network graph was created. A detailed discussion of the

dvantages and disadvantages of density-based thresholds can be found

n van Heuvel et al. (2017) . 

Analysis of nodal integration. Nodal efficiency is a measure related

o the average number of edges that must be traversed to connect a

iven node to all other nodes of the network. Nodes with high nodal

fficiency need few edges to connect with other nodes and easily prop-

gate information to other nodes in the network. Brain network effi-

iency is associated with a wide range of neural processes, such as cog-

ition and emotion regulation, as well as neurological and psychiatric

isorders, especially ADHD (L. Wang et al., 2009 ). The current analy-

is focused on a set of selected brain nodes to investigate whether dif-

erences in the integration and the formation of the emotional subnet-

ork affects the individual ADHD severity. A summary of the functional

onnectivity and network analysis is provided by the supplementary

igure S1. 



T. Viering, P.J. Hoekstra, A. Philipsen et al. NeuroImage 245 (2021) 118729 

2

 

w  

a  

m  

T  

e  

i  

i  

i  

o  

a  

n  

d  

a

 

f  

D  

T  

m  

p  

d  

m  

m  

v  

d  

t  

p  

a  

w  

b  

c  

e  

(

 

e  

n  

(  

d  

B  

t  

f  

p  

i  

T  

 

i  

t  

w  

n  

p  

i  

e  

c  

a

 

a  

a  

A  

t  

(

2

 

t  

a  

a  

r  

 

r  

a  

p  

a  

t  

f  

t  

v

 

a  

u  

p  

r  

v  

t  

a  

d  

t

2

 

i  

g  

t  

m

 

s  

n  

t  

v  

P  

p  

a  

n  

f  

b  

v  

B  

a  

s  

s  

w  

c  

(

 

i  

e  

i  

s  

e  

v

2

 

e  

t  

f  

g  

U  

i  

p  

w  
.4. Statistical analysis and bivariate latent change score models 

Overview. By means of a bivariate latent change score (BLCS) model

ith phenotypical data, we investigated whether emotion dysregulation

t T1 is related to change in ADHD severity from T1 to T2. Within this

odel, the relationships of change in emotion dysregulation from T1 to

2 with ADHD severity at T1 and change in ADHD severity were also

stimated. By applying a BLCS model on neuroimaging data, we further

nvestigated whether the integration of nodes linked to emotion process-

ng and implicit regulation, i.e. nodal efficiency, at T1 predicts change

n ADHD severity from T1 to T2. Within these models, the relationships

f change in nodal efficiency from T1 to T2 with ADHD severity at T1

nd change in ADHD severity were also estimated. Due to the small

umber of participants with complete phenotypical and neuroimaging

ata, we refrained from using one model that includes rs-fMRI as well

s emotion-related data. 

Advantages of bivariate latent change score. BLCS analyses were per-

ormed by using the R Software for Statistical Computing ( Team and R

evelopment Core Team, 2016 ) and the lavaan library ( Rosseel, 2012 ).

hese models are a powerful and flexible class of structural equation

odels (SEM) which allow testing a wide range of developmental hy-

otheses ( Kievit et al., 2018 ). For two variables that are measured at two

ifferent points in time, the change of the variable across time is esti-

ated as a latent change score. The variables for which change score are

odeled may themselves be latent, thus, reflected by a set of measured

ariables. In contrast to cross-sectional comparisons or other longitu-

inal modeling approaches, BLCS models allow estimating parameters

hat capture the extent to which the change between time points de-

ends on baseline values and other not directly observable, latent vari-

bles ( Kievit et al., 2018 ). For example, we can capture the extent to

hich changes in ADHD severity are a function of ADHD severity at

aseline, and also of latent emotion dysregulation scores or nodal effi-

iency at T1. While not directly revealing causal relations, BLCS mod-

ls may be used to test model-based predictions of causal hypotheses

 Kievit et al., 2018 ). 

Robustness of the approach. Prior to model generation and param-

ter estimation, the measured variables were checked for multivariate

ormality using Mardia’s multivariate skewness and kurtosis coefficients

 Mardia, 1970 ) and outliers using Mahalanobis’ distance. Mahalanobis’

istance measures typically follow a 𝜒2 -distribution. Consistent for both

LCS approaches, an outlier exclusion threshold of p > .001 was applied

o exclude individuals with extreme behavioral or neural data (see below

or further explanations). In order to further minimize the influence of

otential outliers and violations of multivariate normality, a robust max-

mum likelihood estimator was used for SEM ( Yuan and Zhong, 2013 ).

hus, several attempts were made to secure the robustness of the results.

Significance testing and further indices of model quality. The signif-

cance of SEM parameter estimates was assessed by the Wald-test statis-

ic. Regression coefficient estimates relevant for the research question

ere additionally tested by means of a 𝜒2 -difference test. To this end,

ested BLCS models were compared in which the respective regression

arameter was freely estimated vs. fixed to zero. The regression and

ntercept parameters estimated within the BLCS model are partial co-

fficients, implying that influences of other modeled variables are ac-

ounted for. Individuals with missing values were not included in any

nalysis. Standardized parameter estimates are reported. 

Whenever appropriate, goodness of fit measures, namely the compar-

tive fit index (CFI), standardized root mean square residual (SRMR),

nd root mean square error of approximation (RMSEA) are reported.

cceptable goodness-of-fit measures should at least be above 0.95 for

he CFI, below 0.08 for the SRMR, and below 0.10 for the RMSEA

 Schermelleh-Engel et al., 2003 ). 

.4.1. BLCS model with emotion dysregulation data 

See Fig. 1 A for a path diagram of the applied BLCS model. The aim of

he first analysis was to investigate the relationships of ADHD severity
4 
nd emotion dysregulation at T1 with changes in emotion dysregulation

nd ADHD severity from T1 to T2. The model additionally provides pa-

ameter estimates indicating the relationship between the change scores.

The BLCS model included latent variables describing emotion dys-

egulation at T1 and T2. These latent variables were derived from three

forementioned questionnaire subscales of emotional lability, emotional

roblems, and conduct symptoms. Thus, emotional dysregulation at T1

nd T2 was estimated as latent variable summarizing the three pheno-

ypical scales. For the latent emotion dysregulation scores as well as

or ADHD severity latent change scores were estimated. They capture

he average change of the respective variables from T1 to T2 and the

ariance of change across individuals. 

Severity of ADHD at T2 was modelled by the sum of ADHD severity

t T1 and the change in ADHD severity from T1 to T2. Emotion dysreg-

lation at T2 was modelled according to the same principle. The model

rovides covariance estimates between ADHD severity and emotion dys-

egulation at T1. Likewise, the covariance between the two change score

ariables was estimated as well. Factor loadings onto the latent emo-

ion dysregulation variable were assumed to be invariant across time

nd thus fixed to equality. To account for the shared method variance

ue to measurement repetitions, residual covariances were allowed over

ime. 

.4.2. BLCS model with functional brain network data 

See Fig. 2 B for the path diagram illustrating the BLCS model includ-

ng the neural data. The aim of the second analysis step was to investi-

ate the relationship of ADHD severity and nodal efficiency at T1 with

he change in nodal efficiency and ADHD severity from T1 to T2. The

odels also estimated the relationship between the changes scores. 

Cost-integrated nodal efficiency (see 2.3) was investigated in two

eparate BLCS analyses. Both analyses addressed the relationship of

odal efficiency in emotional brain networks with ADHD severity across

wo points in time. The first analysis was performed on node-integrated

alues summarizing nodal efficiency information from all 48 nodes.

rincipal component analyses (PCA) were separately computed for time

oint T1 and T2 to integrate nodal efficiency of each individual subject

cross the 48 brain nodes The first PC score, which is a linear combi-

ation of nodal efficiency from all 48 nodes was modeled in BLCS. We

ocused on the first PC considering it to be a low dimensional and ro-

ust summary of individual nodal efficiency that reflect the maximum

ariability between individuals. Thus, the PC scores were entered into a

LCS model to assess possible relationships between ADHD severity and

n integrated estimate summarizing nodal efficiency of the network as-

ociated with emotion processing and implicit emotion regulation. The

econd analysis only used node-specific information. 48 different models

ere estimated, each for one node only. Alpha inflation due to multiple

omparison was controlled by the Benjamini-Hochberg false-discovery

FDR) procedure ( Benjamini and Hochberg, 1995 ). 

For both analyses, latent change scores were created for ADHD sever-

ty and the nodal efficiency variables. Severity of ADHD at T2 was mod-

lled by the sum of ADHD severity at T1 and the change in ADHD sever-

ty from T1 to T2. Nodal efficiency at T2 was modelled following the

ame principle. The covariance between ADHD severity and the latent

motional problems variable was estimated as well. Likewise, the co-

ariance between the two change score variables was specified. 

.4.3. Additional analyses 

Correlation analyses were conducted to investigate whether nodal

fficiency and the associated first PCs are related with the latent emo-

ion dysregulation variable derived from questionnaire data. Individual

actor scores for the latent variables were obtained using factor score re-

ression with the lavPredict-function of lavaan ( Devlieger et al., 2016 ).

sing analysis of variance (ANOVA), we additionally investigated the

mpact of medication status on the change in ADHD severity. Partici-

ants were divided into four groups. The first group consisted of those

ho took stimulant medication during T1 and T2, group two and three
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Fig. 1. Results of bivariate latent change score analysis with latent emotion dysregulation scores. [A] Path diagram of bivariate latent change score model 

with latent emotion dysregulation: Standardized parameter estimates are included as path coefficients (regression weights). Non-significant parameters were set 

to zero. Results of the phenotypical analysis using latent emotion dysregulation scores are displayed. [B] Correlation of emotion dysregulation with change in 

ADHD severity: A scatter plot with the linear fit was created for emotion dysregulation at T1 and individual change in ADHD severity from T1 to T2. The dark gray 

area indicates 95%- confidence intervals. The light gray area indicates 95%- prediction intervals. The points forming a line represent those individuals that received an 

ADHD severity score of zero at T1 and T2 and whose estimated change was derived solely from their emotion dysregulation scores at T1 ( n = 23). 
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f those who took stimulant medication at T1 or T2, and the final group

f those who did not take stimulant medication at any time. 

. Results 

.1. Sample characteristics 

Participants were on average 17.22 years old at T1 and 20.97 years

t T2. On average, the time period between T1 and T2 was 3.75 years

 SD = 0.503, Range = 2.64–5.18). Using the Wilcoxon signed rank test,

 significant decrease was observed for ADHD hyperactivity-impulsivity

ymptoms scores ( W = 1401.5, p = .006, r = 0.344). Average IQ in-

reased significantly ( t (97) = − 2.370, p = .020) and significant changes

n the use of stimulants were observed ( 𝜒2 = 12.042, p < .001). All other

elevant variables remained constant. Demographic details of the sam-

le are summarized in Table 1 . Sample characteristics as a function of

ubgroup can be found in figure S2 and table S1 of the Supplement. 

.2. BLCS model with emotion dysregulation data 

We first investigated whether emotion dysregulation at T1 is asso-

iated with change in ADHD severity. Prior to model estimation, one

articipant was identified as outlier and discarded due to large Maha-

anobis’ distance. 

Confirmatory factor analysis was conducted for initial variable se-

ection. Significant loadings (fixed to be invariant across time points)

ere found for the emotional lability subscale of CPRS-R:L, ( z = 4.356,

 < .001, 𝜆 = 0.521), SDQ’s emotional symptoms subscale ( z = 3.342,

 = .001, 𝜆 = 0.515), and SDQ’s conduct symptoms subscale ( z = 3.436,

 = .001, 𝜆 = 0.485). Thus, all variables were considered for the BLCS

odel. 
5 
The BLCS model revealed a significant relationship of the latent emo-

ion dysregulation at T1 with change in ADHD severity ( z = 2.117,

 = .034, 𝛽 = 0.456; 𝜒2 -difference-test: 𝜒2 = 5.545, p = .019). Higher

motion dysregulation at T1 was associated with less favorable change

smaller decrease of symptoms) in ADHD severity from T1 to T2. The

elationship of ADHD severity at T1 with change in emotion dysregula-

ion and the relationship of the changes were not significant. Respective

arameters were set to zero for the final parameter estimation. The final

LCS model ( 𝜒2 (17) = 22.257, p = .175) provided satisfactory goodness-

f-fit (CFI = 0.987, SRMR = 0.047, RMSEA = 0.055). Fig. 1 summarizes

he results of the BLCS model with phenotypical data. 

.3. BLCS model with functional brain network data 

.3.1. Whole-network BLCS analysis with nodal efficiencies after PCA 

To investigate whether nodal efficiency of the emotion-related net-

ork was related to change in ADHD severity, a whole-network BLCS

odel was used such that nodal efficiency was combined across the

motion-related network using PCA. Nodes of the dorsal anterior cingu-

ate cortex and insula were found to contribute negatively to the first PC

nd nodes of the basal ganglia, medial prefrontal cortex, orbitofrontal

ortex, and hippocampus contributed positively (see Fig. 2 C). The first

C captured 20.6% of the variance. Using Mahalanobis’ distances and an

lpha-threshold of 0.001, three participants were identified as outliers

nd discarded from the analysis. 

The whole-network BLCS model revealed a significant relationship

etween the first PC at T1 and change in ADHD severity ( z = − 2.207,

 = .027, 𝛽 = − 0.192; 𝜒2 -difference-test: 𝜒2 = 5.1383, p = .023). The

igher the PC scores at T1 were, the better was the change in ADHD

everity from T1 to T2 (larger decreases of symptoms). The relation-

hip of ADHD severity at T1 with change in the PC and the relation-

hip of the changes were not significant. Respective parameters were
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Fig. 2. Results of bivariate latent change score analysis with nodal efficiency of the whole emotional network summarized by their first principal component. [A ] 

Path diagram of significant bivariate latent change score model with whole-network projection of nodal efficiencies : Standardized parameter estimates are 

included as path coefficients (regression weights). Non-significant parameters were set to zero. Results of the whole-network analysis with nodal efficiencies after 

principal component analysis are presented. [B] Correlation of whole-network projection of nodal efficiencies with change in ADHD severity: A scatter plot 

with the linear fit was created for the first PC at T1 and individual change in ADHD severity from T1 to T2. The dark gray area indicates 95%- confidence intervals. 

The light gray area indicates 95%- prediction intervals. [C] Eigenvector values of first PCA component: The values of the first eigenvector are associated with 

specific brain parcels. They reflect how strongly each node contributes to the first PCA component. The higher the absolute eigenvector value of a node, the more it 

contributes to the first PCA component. Dorsal anterior cingulate cortex and insula nodes were found to contribute negatively to the first PC while nodes of the basal 

ganglia, medial prefrontal cortex, orbitofrontal cortex, and hippocampus contributed positively. [D] Density-specific p-values for relation of whole-network 

projection of nodal efficiencies with change in ADHD severity: Density-specific p-values were calculated. The relation of the first PCA component at T1 with 

change in ADHD severity was investigated. 𝜒2 -difference tests were used to obtain p-values. At each density-level an individual BLCS model was estimated. 

s  

(  

(  

d  

P  

n  

(  

w

3

 

t  

t  

s  

l  

w

 

i  

(  

𝜒  

h  

c  

t  

d  

i  

c  
et to zero for the final parameter estimation. The final BLCS model

 𝜒2 (2) = 0.857, p = .651) provided satisfactory goodness-of-fit measures

CFI = 1, SRMR = 0.023, RMSEA = 0). The analysis was repeated using

ensity-specific nodal efficiency. The significant relationship of the first

C at T1 with change in ADHD severity, shown for density-integrated

odal efficiency, was confirmed with density thresholds 0.2 and 0.25

see Fig. 2 D). Fig. 2 summarizes the results of the BLCS model with net-

ork data after PCA. 

.3.2. Node-specific BLCS analysis 

We used 48 BLCS models with node-specific efficiency to investigate

he relationship of nodal efficiency of brain regions associated with emo-

ion processing and implicit emotion regulation with change in ADHD
6 
everity. Mahalanobis’ distances for the measured variables were calcu-

ated for all 48 BLCS models to identify outliers. Multivariate normality

as evaluated separately for each model. 

A significant relationship between nodal efficiency at T1 and change

n ADHD severity was detected for the right orbitofrontal cortex

 z = − 3.972, p = .003 (BH-corrected), 𝛽 = − 0.272; 𝜒2 -difference-test:
2 = 12.547, p = .019 (BH-corrected for multiple comparisons)). The

igher the nodal efficiency values at T1 were, the better were the

hanges in ADHD severity from T1 to T2 (larger decreases of symp-

oms). Parameter estimation of the associated BLCS model was con-

ucted after exclusion of one outlier. The relationship of ADHD sever-

ty at T1 with change in nodal efficiency and the relationship of the

hanges were not significant. Respective parameters were set to zero for
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Table 1 

Characteristics of the resting-state fMRI sample at both data collection phases (T1 and T2). 

N = 99 NeuroIMAGE I (T1) NeuroIMAGE II (T2) Difference test between T1 and T2 

Mean SD Mean SD Test statistic p-value Effect-size 

ADHD,hyperactivity-impulsivity symptoms 2.88 2.83 2.55 2.54 W = 1401.5 .006 r = 0.34 

ADHD, inattention symptoms 3.68 3.24 3.05 3.01 W = 1476 .167 r = 0.014 

age (years) 17.22 3.15 20.97 3.09 t = − 74.04 < 0.001 𝛿 = 7.44 

IQ (WISC/WAIS) 102.93 14.74 105.43 17.80 t = − 2.37 .020 𝛿 = 0.24 

CPRS-R:L emotional lability ∗ 47.91 9.37 45.88 5.09 W = 487.5 .091 r = 0.28 

SDQ emotional symptoms ∗∗ 2.14 1.87 2.41 2.00 W = 425 .288 r = 0.16 

SDQ conduct symptoms ∗∗ 1.37 1.29 1.44 1.33 W = 376.5 .286 r = 0.18 

count count 

Females 42 42 

individuals with ADHD-related impairments 51 45 𝜒2 = 2.50 .114 g = 0.30 

Stimulant users 35 18 𝜒2 = 12.04 < 0.001 g = 0.38 

DSM-IV MDD (K-SADS) ∗∗∗ 2 1 𝜒2 = 0.50 .480 g = 0.50 

DSM-IV anxiety (K-SADS) ∗∗∗ 6 3 𝜒2 = 1.33 .248 g = 0.50 

DSM-IV ODD (K-SADS) ∗∗∗ 12 6 𝜒2 = 2.08 .149 g = 0.25 

DSM-IV CD (K-SADS) ∗∗∗ 2 1 𝜒2 = 0 1 g = 0.17 

Notes: Means between time points were either compared with paired-sample t -tests or Wilcoxon signed rank tests. Frequency 

distributions were compared using McNemar’s test. For the CPRS-R: L t -scores are presented, while for the SDQ question- 

naire scores are given. Cohen’s 𝛿 or Cohen’s g were used for effect sizes.; ADHD = Attention Deficit/Hyperactivity Disor- 

der; CD = Conduct Disorder; CPRS-R:L = Conners’ parent rating scale, revised, long version; IQ = Intelligence Quotient; 

K-SADS = Kiddie Schedule for Affective Disorders and Schizophrenia; MDD = major depressive disorder; N = number of 

participants; ODD = Oppositional Defiant Disorder; CD = Conduct Disorder; SD = standard deviation; SDQ = Strengths and 

Difficulties Questionnaire; t = test statistic for t-tests; W = test statistic for Wilcoxon signed rank test. 
∗ data was available for 78 participants at T1 and 80 participants at T2. 
∗ ∗ data was available for 59 participants at T1 and 80 participants at T2. 
∗ ∗ ∗ individuals diagnosed with respective disorder. 
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he final parameter estimation. The final BLCS model ( 𝜒2 (2) = 1.827,

 = .401) provided satisfactory goodness-of-fit measures (CFI = 1,

RMR = 0.035, RMSEA = 0). The analysis was repeated using density-

pecific nodal efficiency. The significant relationship of nodal efficiency

t T1 with change in ADHD severity, shown for density-integrated nodal

fficiency, was confirmed with four density thresholds between 0.3 and

.45 (see Fig. 3 D). None of the other nodal BLCS models revealed a

ignificant relationship between nodal efficiency and change in ADHD

everity. 

.3.3. Additional analyses 

Correlation analysis of nodal efficiency and emotion dysregulation at

1. To investigate whether baseline nodal efficiencies and emotion dys-

egulation are related, a correlation analysis was conducted. Emotion-

elated questionnaire subscales and rs-fMRI data were available for

 = 58 participants. Using their latent emotion dysregulation scores

t T1, it was shown that no significant correlations exist with node-

ntegrated nodal efficiency ( r = 0.165, t (56) = 1.252, p = .215) and nodal

fficiency of the right orbitofrontal cortex ( r = 0.136, t (56) = 1.027,

 = .309) at T1. 

BLCS analyses with alternative parcellation scheme. To show the

obustness of our results, the BLCS analyses described above were re-

eated using an alternative parcellation scheme. The general pattern of

esults corresponded to that of the analyses using the primary parcel-

ation scheme. In agreement with the previous analysis, a significant

elationship of nodal efficiency of the right orbitofrontal cortex at T1

nd change in ADHD severity was shown at a density threshold of 0.35

 z = 3.316, p = .049 (BH-corr.), 𝛽 = − 0.277). At the integrated level,

owever, the results did not remain significant after FDR correction

 z = 3.149, p = .265 (BH-corr.), 𝛽 = − 0.263). 

ANOVA for impact of medication status on ADHD severity scores.

e used ANOVA to investigate if the medication status influences

he change in ADHD severity scores. The change in ADHD severity

id not significantly depend on the medication status at T1 and T2

 F (3,94) = 1.893, p = .136). 
7 
. Discussion 

We examined whether emotion dysregulation and nodal efficiency of

rain regions associated with emotion processing and implicit emotion

egulation, both measured during late adolescence, predicted change in

DHD severity across a period of three to four years. To this end, BLCS

odels were used to analyze the influence of nodal efficiency, derived

sing graph theory methods, and questionnaire data on emotional prob-

ems, conduct problems and emotional lability. At the symptom level,

ower baseline emotion dysregulation was associated with more favor-

ble change in ADHD severity. At the neural level, nodal efficiency inte-

rated across emotion-related brain regions predicted changes in ADHD

everity. Especially higher nodal efficiency in the area of the right or-

itofrontal cortex was associated with more favorable course of ADHD.

aseline nodal efficiency and emotion dysregulation were however not

ignificantly correlated. 

It was previously shown that conduct problems, emotional prob-

ems and emotion dysregulation during childhood may be related

o the course of ADHD ( Biederman et al., 2011 ; Caye et al., 2016 ;

iranda et al., 2015 ). We add to this knowledge by showing that a

atent variable derived from these variables, here referred to as emo-

ion dysregulation, affects the course of ADHD severity from late ado-

escence to early adulthood. The results join a body of research that

dentified a clear link between emotion dysregulation and ADHD, specif-

cally relating emotional and associated problems to the outcome of

DHD. Previous studies showed that individuals with emotional comor-

idities and problems are often those with worse ADHD outcomes later

n life ( Biederman et al., 2011 ; Caye et al., 2016 ; Miranda et al., 2015 ;

asser et al., 2016 ). Our findings, however, differ from most others in

hat we did not consider childhood ADHD, but ADHD in later stages of

ife, i.e., late adolescence and early adulthood. Also, rather than merely

xamining cross-sectional data or categorical outcome variables (e.g.,

ersistent or remittent ADHD), we examined change and its dependence

n emotion dysregulation through the use of latent change score mod-

ls. In contrast to models that analyze aggregated data, these models can

apture change at the individual level and detect differences in intrain-



T. Viering, P.J. Hoekstra, A. Philipsen et al. NeuroImage 245 (2021) 118729 

Fig. 3. Results of bivariate latent change score 

analysis with nodal efficiency of right or- 

bitofrontal cortex. [A] Path diagram of bi- 

variate latent change score model analy- 

sis with nodal efficiency of the right or- 

bitofrontal cortex: Standardized parameter 

estimates are included as path coefficients (re- 

gression weights). Non-significant parameters 

were set to zero. [B] Correlation of right 

orbitofrontal cortex nodal efficiency with 

change in ADHD severity: A scatter plot 

with the linear fit was created for nodal effi- 

ciency of the right orbitofrontal cortex at T1 

and individual change in ADHD severity from 

T1 to T2. The dark gray area indicates 95%- 

confidence intervals. The light gray area indi- 

cates 95%-prediction intervals. [C ] Right or- 

bitofrontal cortex parcel with significant 

relation of nodal efficiency with change 

in ADHD severity: Right orbitofrontal cor- 

tex nodal efficiency at T1 affected change in 

ADHD severity from T1 to T2. [D] Density- 

specific p-values for relation of right or- 

bitofrontal cortex efficiency with change in 

ADHD severity: Density-specific p -values were 

calculated after applying FDR-procedures. The 

relation of nodal efficiency at T1 with change 

in ADHD severity from T1 to T2 was investi- 

gated. 𝜒2 -difference tests were used to obtain 

p -values. At each density-level an individual 

BLCS models were estimated. 
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ividual changes ( Baltes et al., 1988 ). Our results suggest that emotion

ysregulation predicts the development of ADHD severity independent

rom ADHD severity at baseline and therefore may have clinical rele-

ance. 

The principal component analysis with nodal efficiencies of the

hole network revealed that brain regions contributed differently to the

rst principal component. Cortical brain regions associated with emo-

ion processing, e.g., the dorsolateral anterior cingulate cortex and the

nsula, contributed negatively, whereas regions associated with implicit

motion regulation, e.g., the medial prefrontal and orbitofrontal cor-

ex, contributed positively (cf. Etkin et al., 2015 ) . In agreement with

ur original hypothesis (compare Section 1 ), this pattern of opposed

oadings indeed suggested that the investigated brain regions compose

wo anti-correlated, functionally separated subnetworks (emotion pro-

essing versus regulation). This clear separation on the cortical level

as, however, not found on the subcortical level. Amygdala, striatum

nd parts of the brainstem, i.e., regions highly associated with funda-

ental emotional processes, showed positive loading. While subcortical

tructures extract rather simple emotional and motivational features,

he insula provides additional interoceptive information ( Uddin et al.,

017 ). The anterior cingulate cortex relates the emotional content to

ther emotional information ( Etkin et al., 2015 ). 

In summary, high individual scores in the first principal component

ere thus characterized by low nodal efficiencies in cortical regions

f emotion processing and high nodal efficiencies in cortical regions

f implicit emotion regulation, i.e., large differences in nodal efficien-

ies between these two subnetworks. The first principal component was

ound to predict the course of ADHD severity from late adolescence

nto early adulthood over and above baseline effects of ADHD sever-

ty. Thus, a pattern of low nodal efficiency within cortical structures

ssociated with emotion processing and of high nodal efficiency within

ubcortical structures and cortical structures involved in implicit regu-

ation may have a positive impact on the future course of ADHD. The

esults of the principal component-based analysis of the whole network
8 
upport the view that, in ADHD, circuits related to emotion processing

nd implicit emotion regulation are relevant in addition to circuits as-

ociated with cognitive control and attention. They thus fit into a large

ody of literature that points to the importance of the regions studied in

he present network analyses. For instance, ADHD-specific altered func-

ional connectivity was repeatedly found in the ventromedial prefrontal

ortex, orbitofrontal cortex, frontal pole, amygdala, and ventral stria-

um ( Bos et al., 2017 ; Costa Dias et al., 2013 ; Ho et al., 2015 ; Lin et al.,

014 ; Posner et al., 2013 ; L. Wang et al., 2009 ). Also, it was shown that

ifferences in default mode network connectivity are associated with

ersistent ADHD outcomes ( Mattfeld et al., 2014 ; Sudre et al., 2017 ).

owever, respective findings were derived from cross-sectional analy-

es and provide little insight into associations between changes in ADHD

nd preceding brain activity. Neither can they directly capture change

t the individual level, nor can they directly related those changes to

dditional baseline factors ( Kievit et al., 2018 ). 

The node-specific analysis revealed a significant positive relationship

etween nodal efficiency at baseline and the course of ADHD severity

or the right orbitofrontal cortex. Higher nodal efficiency values were as-

ociated with more favorable changes in ADHD severity over time. The

resent results extend literature that linked altered orbitofrontal cortex

ctivation during cognitive control to persistent ADHD ( Schulz et al.,

017 ). While also being thought to be influenced by cognitive processes

 Rolls, 2019 ), the orbitofrontal cortex is particularly linked to the ex-

inction or reevaluation of emotion processing. Similar to the ventro-

edial prefrontal cortex, the orbitofrontal cortex is considered essential

or integrating information to allow emotional processes to be affected

y goals, motivational states, or experiences. In primarily implicit pro-

esses, it provides contextual information, and thus helps to confine

motions to an appropriate range ( Braunstein et al., 2017 ). For instance,

t has been suggested that altered functional connections between the

mygdala and the orbitofrontal cortex, which are particularly relevant

or emotional outcome evaluation, may lie at the core of emotion net-

ork dysregulation in ADHD ( Christiansen et al., 2019 ). The present re-
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ults suggest that the course of ADHD severity depends on the efficiency

ith which the orbitofrontal cortex is functionally integrated with re-

ions associated with emotion processing and implicit emotion regula-

ion. Beyond this, they suggest that functional connectivity alterations

elevant for the course of ADHD severity extend beyond regions com-

only associated with cognitive control. In sum, nodal efficiency and

hus the strength of integration of the orbitofrontal cortex with other

egions involved in emotion processing and implicit regulation appear

o have a positive impact on future changes in ADHD severity. 

Contrary to our expectations, emotion dysregulation at baseline was

ot significantly correlated with nodal efficiency at baseline. However,

oth the latent emotion dysregulation variable and nodal efficiency are

erely approximations for the true underlying concept of "emotion dys-

egulation". Presumably they show a non-significant correlation since

hey cover only partly overlapping aspects. For example, regions of the

rain associated with cognitive control of emotions, e.g. via cognitive

eappraisal, were not taken into account in the definition of the present

motion network. With respect to the orbitofrontal cortex, other vari-

bles associated with emotions, such as reward and motivation, may be

ore strongly correlated with nodal efficiency ( Braunstein et al., 2017 ).

It is noticeable that both latent change score models that analyzed

odal efficiency showed significant effects in different ranges of network

ensity. While the principal component-based model, which analyzed

odal efficiency of the whole network, revealed significant effects in the

ow to medium range of densities, the model investigating orbitofrontal

odal efficiency yielded significant results at the high end of density

anges (see Figs. 2 D and 3 D). Thus, for the former model, particularly

trong functional connectivity between nodes seems to drive the sig-

ificant relationship between the observed pattern of nodal efficiencies

nd change in ADHD severity, whereas for the latter model, medium-

trong functional connectivity between the orbitofrontal cortex and the

ther nodes of the network appears to be most relevant. Following the

pproach of Ginestet et al. (2011) we applied density thresholding to

eparate effects of network topology from differences in functional con-

ectivity strength. However, in some cases, density thresholding can

ias the correlation between efficiency and external variables. Possibly,

nterindividual differences in efficiency are associated with individual

ifferences in functional connectivity and subjects with low values in

ean functional connectivity might be more affected by noisy, spurious

onnections ( van den Heuvel et al., 2017 ). However, for both change

core models the correlation between individual efficiency scores and

ean functional connectivity values were not significant (BLCS model

fter PCA: r = 0.077, p = .443; BLCS model with orbitofrontal cortex:

 = 0.086, p = .399). Thus, we found no evidence that interindividual

ifferences in spurious connections influenced our results. 

BLCS models provided an elegant method for studying change

nd the effect of behavioral and neural covariates on this change

 Kievit et al., 2018 ). Although our sample was relatively large compared

o other neuroimaging studies, nevertheless, for BLCS models the num-

er of individuals used was rather low ( Wolf et al., 2013 ). Yet, we were

ble to validate the robustness of the findings by conducting the analyses

ith an alternative parcellation scheme. 

In the present analysis, emotion dysregulation was gauged from

uestionnaire subscales for conduct problems, emotional problems and

motional lability. Thus, it also entailed information strongly associated

ith other psychiatric disorders like depression, anxiety or conduct dis-

rder ( Vugteveen et al., 2021 ). While a relatively high proportion of

ndividuals with corresponding comorbidities can be expected in the

eneral ADHD population (Biederman, Newcorn, & Sprich, 1991), only

ew subjects showed these comorbidities in the present sample. Accord-

ngly, it is rather unlikely that the results presented here are driven by

omorbidities such as depression or anxiety. 

We examined if emotion dysregulation and nodal efficiency of re-

ions associated with emotion processing and implicit emotion regu-

ation predicted change in ADHD severity from late adolescence into

arly adulthood. A pattern of low nodal efficiency in cortical brain re-
9 
ions associated with emotion processing and high nodal efficiency in

ubcortical regions and cortical region of implicit emotion regulation

redicted a less severe course of ADHD. Further, we showed that higher

odal efficiency of the right orbitofrontal cortex was related to a more

avorable course of ADHD. Moreover, emotion dysregulation, gauged as

 latent variable from emotion problems, conduct problems and emo-

ional lability captured from questionnaires was associated with more

evere ADHD courses. Our study thus supports the involvement of emo-

ion dysregulation and brain regions associated with emotion processing

nd implicit emotion regulation in the course of ADHD. Knowing that

ndividuals with emotion regulation problems are at higher risk for a

egative progression of ADHD, such individuals should receive special

ttention and additional interventions. 
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