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Relatively little is investigated regarding the neurophysiology of adult attention-deficit/hyperactivity disorder (ADHD). Mismatch
negativity (MMN) is an event-related potential component representing pre-attentive auditory processing, which is closely
associated with cognitive status. We investigated MMN features as biomarkers to classify drug-naive adult patients with ADHD and
healthy controls (HCs). Sensor-level features (amplitude and latency) and source-level features (source activation) of MMN were
investigated and compared between the electroencephalograms of 34 patients with ADHD and 45 HCs using a passive auditory
oddball paradigm. Correlations between MMN features and ADHD symptoms were analyzed. Finally, we applied machine learning
to differentiate the two groups using sensor- and source-level features of MMN. Adult patients with ADHD showed significantly
lower MMN amplitudes at the frontocentral electrodes and reduced MMN source activation in the frontal, temporal, and limbic
lobes, which were closely associated with MMN generators and ADHD pathophysiology. Source activities were significantly
correlated with ADHD symptoms. The best classification performance for adult ADHD patients and HCs showed an 81.01%
accuracy, 82.35% sensitivity, and 80.00% specificity based on MMN source activity features. Our results suggest that abnormal MMN
reflects the adult ADHD patients’ pathophysiological characteristics and might serve clinically as a neuromarker of adult ADHD.

Translational Psychiatry          (2021) 11:484 ; https://doi.org/10.1038/s41398-021-01604-3

INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) has been defined
as a neurodevelopmental disorder with symptoms of distracted
attention, hyperactivity, and impulsivity [1]. Although ADHD is
known to be a disease with childhood-onset, ~15% of children
with ADHD maintain their symptomatology, meeting full diag-
nostic criteria for adults [2]. Detection of adult patients with ADHD
is crucial to providing proper management because they still
display marked difficulties in maintaining selective attention to
relevant information and increased distractibility towards irrele-
vant stimuli [3, 4]. However, ADHD in adulthood is often
misdiagnosed as anxiety or mood symptoms in a clinical setting
[5]. Despite the existence of adulthood ADHD and its clinical
importance, relatively little is known about the neurobiological
background of adult ADHD [6].
Event-related potentials (ERPs) have been widely utilized to

study the attentional processes in childhood ADHD [7]. In
particular, mismatch negativity (MMN), an ERP component,
represents pre-attentive auditory processing that is closely
correlated with cognitive status in the absence of behavioral
responses as well as motivation [8–10]. Given that patients with
ADHD suffer from proper distribution of attention, such as
focusing and maintaining their attention on the tasks, MMN has
been considered a good neuromarker for evaluating the

neurophysiological mechanisms of ADHD. Moreover, MMN reflects
glutamatergic function [11], and the critical pathology for MMN
reduction might be associated with the N-methyl-D-aspartate
(NMDA) receptor system dysfunction [12]. NMDA receptors have
been well studied for their crucial role in cognitive function, such
as learning and memory [13, 14]. In addition, recent reports also
suggest the dysfunction of NMDA receptors in the pathophysiol-
ogy of ADHD [15]. In this regard, MMN might be a promising
biomarker of ADHD.
Several studies have assessed MMN changes and their

correlates with attentional problems in children with ADHD
[16–20]. A recent meta-analysis revealed a reduced MMN
amplitude in children with ADHD compared to healthy controls
(HCs) [7]. However, to date, no study has investigated MMN
changes in adult ADHD. Regarding maturational processes of
brain activity with aging [21], the neurobiological basis of adult
ADHD might be different from that of childhood ADHD. In
addition, even though the symptoms of adult ADHD are similar to
those of childhood ADHD, symptom severity, especially hyper-
activity, may decrease over time [22]. This suggests that adults
with ADHD may display different MMN responses from those of
childhood ADHD.
Recently, an increasing number of researchers have attempted

to differentiate patients with ADHD from HCs on the basis of
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machine learning methods with EEG biomarkers. However, few
studies have investigated the classification of adult patients with
ADHD and HCs. They have reported accuracies ranging from
hardly above chance level (50%) to beyond 90%. For example,
Mueller et al. [23, 24] classified adult ADHD patients and HCs
using Go-NoGo ERPs and achieved accuracies above 90%. Tenev
et al. [25] measured resting-state conditions and neuropsycholo-
gical tasks, obtaining an accuracy of 82%. Studies of resting-state
band power reported 68% accuracy [21] and 76% accuracy [26].
In addition, Kiiski et al. [6] demonstrated that resting-state
connectivity features did not reliably classify ADHD patients
and HCs.
Detection of electrophysiological markers to differentiate adult

ADHD patients could support clinicians to provide appropriate
diagnosis and treatment for patients suffering from difficulties in
directing and maintaining attention in their lives. However, given
that there have been limited studies of adult ADHD, further
studies are warranted to identify biomarkers for adult ADHD using
machine learning techniques. Moreover, research differentiating
between adult patients with ADHD and HCs using MMN features
has not yet been undertaken.
The aim of this study was to investigate changes in MMN

features in adult patients with ADHD compared to HCs at both the
sensor (amplitude and latency) and source levels (source
activation). In addition, we explored the relationships between
MMN features and ADHD symptom scores. Finally, we examined
the possibility of MMN features serving as biomarkers by
differentiating between ADHD patients and HCs using machine
learning techniques. We hypothesized that MMN activities at both
the sensor and source levels would be attenuated in adult ADHD
patients compared to HCs, reflecting the pathophysiology of
ADHD. We also hypothesized that these MMN characteristics could
differentiate between ADHD patients and HCs with acceptable
classification performances. To the best of our knowledge, this
study is the first to examine the differences in MMN characteristics
between adult patients with ADHD and HCs and to classify them
via machine learning measures.

MATERIALS AND METHODS
Participants
A total of 79 subjects aged 18–45 years participated in this study. Subjects
included patients with ADHD (n= 34, male: 28, female: 6, mean age:
24.76 ± 7.02 years; range: 19–45 years) and healthy controls (n= 45, male:
36, female: 9, mean age: 25.51 ± 5.48 years; range: 18–37 years).
Participants with ADHD were enrolled from the Department of Psychiatry
at Soonchunhyang University Cheonan Hospital, Korea. All psychiatric
evaluations were conducted by a board-certified psychiatrist specializing in
adult ADHD using the full criteria for ADHD in accordance with the DSM-V.
Patients who had mental retardation or alcohol abuse, undergone
electroconvulsive therapy, or suffered head injury were not included. All
patients with ADHD were drug-naïve. Forty-five non-smoking HCs were
enrolled by the local community via newspapers and posters. We excluded
participants with any axis I or II comorbid psychiatric diagnosis or any
history of neurological diseases from the initial screening interviews.
Participants had normal hearing ability confirmed by the 512 Hz tuning
fork test [27], and all were identified as right-handed. The Institutional
Review Board and Ethics Committee of Soonchunhyang University
Cheonan Hospital approved the study and all experimental protocols
(IRB number: 2019-05-004). The study was conducted according to the
approved guidelines. Informed consent was acquired from all study
participants.

Psychological measures
All participants were assessed for ADHD symptoms using the Korean
version of the Adult ADHD self-report scales (ASRS) [28]. The ASRS is a
widely used self-reporting scale with 18 items scored on a 5-point Likert
scale to screen for ADHD in the general population [29]. It evaluates ADHD
symptoms based on the DSM-IV criteria for ADHD over the past six months.
Inattention (ASRS inattention score, ASRS-I) and hyperactivity scores (ASRS

hyperactivity score, ASRS-H) were calculated separately. The Korean
version of the ASRS shows good sensitivity and specificity [28].

Data acquisition and analysis
EEG data were recorded by a NeuroScan SynAmps2 amplifier (Compume-
dics USA, Charlotte, NC, USA) with 62 Ag-AgCl channels mounted on a Quik
Cap, using an extended 10–20 placement scheme. The ground channel
was placed on the forehead, and the physically linked reference channel
was attached to both mastoids. Vertical electrooculogram (EOG) channels
were located above and below the left eye. Horizontal EOG channels were
placed at the outer canthus of each eye. The impedance was maintained
below 5 kΩ. The EEG data were obtained with a band-pass filter with cutoff
frequencies ranging from 0.1 to 100 Hz at a 1000 Hz sampling rate.
The acquired EEG data were preprocessed by CURRY 8 (Compumedics

USA, Charlotte, NC, USA) and MATLAB R2018b (MathWorks, Natick, MA,
USA). Gross artifacts were rejected from visual inspection of an
experienced person without any prior knowledge concerning the origin
of the data. Artifacts related to eye movements or eye blinks were
corrected using a covariance- and regression-based mathematical
procedure implemented in the preprocessing software [30]. The data
were filtered using a 1–30 Hz band-pass filter. Then, the data were
epoched from 100ms pre-stimulus to 600ms post-stimulus. For baseline
correction, the epochs were deducted from the mean value of the pre-
stimulus interval. If there were any remaining epochs containing significant
physiological artifacts (amplitude exceeding ±75 μV) in any of the 62
channel sites, they were rejected from further analyses. For the ERP
analysis, only artifact-free epochs were averaged along trials and
participants.
EEG recordings and stimulus presentation onset were synchronized by

E-prime (Psychology Software Tools, Pittsburgh, PA, USA). The auditory
stimuli composed of sounds at 1000 Hz and 85 dB SPL. The participants
were instructed to focus their attention on a picture book called “Where’s
Wally?” without paying attention to the auditory stimuli. To obtain the
MMN wave, the ERP wave derived from standard stimuli was subtracted by
the ERP wave from deviant stimuli for each participant.
Standard stimuli lasting 50ms were presented, randomly interspersed

with deviant stimuli lasting 100ms (90% and 10% probabilities,
respectively). There were a total of 750 auditory stimuli with a 500ms
inter-stimulus interval. These stimuli were presented by MDR-D777
headphones (Sony, Tokyo, Japan). The experiment took about 10min to
complete.
MMN amplitude was measured as the peak voltage between 130 and

280ms at nine channels (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4) according
to previous studies revealing that the frontocentral electrodes show larger
MMN amplitudes [31–33]. The time range for MMN peak amplitudes was
on the basis of the grand-averaged waveforms at FCz channel. The number
of epochs for standard and deviant stimuli in the analysis did not
significantly differ between patients with ADHD and HCs (standard stimuli:
598.59 ± 66.12 vs. 609.18 ± 48.56, p= 0.414; deviant stimuli: 66.91 ± 7.46 vs.
67.71 ± 5.14, p= 0.575).

Source imaging
In order to estimate the cortical distribution of the standardized source
current density for MMN activity, standardized low-resolution brain
electromagnetic tomography (sLORETA) was employed. sLORETA has
been widely utilized as a representative source-imaging method to solve
the EEG inverse problem [34]. It assumes that the source activity of a
voxel is similar to that of the neighboring voxels when computing a
particular solution, and applies a proper standardization for the current
density. The lead field matrix was calculated using a realistic head model
which was segmented according to the Montreal Neurological Institute
(MNI) 152 standard template, wherein the three-dimensional solution
space was confined to only the cortical gray matter and hippocampus
[35]. The three-dimensional solution space consisted of 6239 voxels with
a 5-mm resolution. Anatomical labels including the Brodmann areas
were provided with a proper transformation from the MNI to Talairach
space [36].
The MMN source image was analyzed between 130 and 280ms after

stimulus onset. The comparison of sLORETA images between adult patients
with ADHD and HCs for MMN was conducted by a statistical non-parametric
mapping method (SnPM) carried out in the sLORETA software. The estimated
voxel activation was averaged across the calculated time frame and tested
with a voxel-by-voxel independent t-test for the 6239 voxels, followed by a
randomization test (n= 5000) for correcting multiple comparisons.
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Statistical analysis
Differences of age, education years, and psychological characteristics
(ASRS) between adult patients with ADHD and HCs were compared using
independent t-tests. A chi-squared test was used to analyze between-
group difference in sex ratio. The significance level was p < 0.05 (two-
tailed). A multivariate analysis of variance (MANOVA) was performed to
evaluate differences in MMN amplitudes and latencies at frontocentral
electrodes and MMN source activities between the two groups, with
education years as a covariate. An adjusted p-value of 0.05/52= 0.000962
(18 features from sensor level and 34 features from source level) by
Bonferroni corrections were used to control for multiple comparisons.
Effect sizes were represented as partial eta squared (η2). A partial Pearson’s
correlation analysis was conducted between MMN features from sensor
and source levels and ADHD symptom scores, with years of education
controlled for. After the correlation analysis, an adjusted p-value of 0.05/
(3*27)= 0.000617 (27 significant MMN features with three ASRS scores) by
Bonferroni corrections were applied. Statistical analyses were carried out
using SPSS 21 (SPSS, Inc., Chicago, IL, USA).

Feature selection and classification
We discriminated between adult ADHD patients and HCs using the MMN
sensor and source activities to check their potential usability as biomarkers.
To find optimal features for discriminating the two groups, both MMN
features from sensor and source levels were used as follows (Table 1):
sensor-level (18 features), each of the nine frontocentral MMN amplitudes
and latencies (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, and C4); source-level (34
features), MMN source activities in 34 brain regions (frontal areas: superior
frontal gyrus, middle frontal gyrus, medial frontal gyrus, inferior frontal
gyrus, orbital gyrus, subcallosal gyrus, rectal gyrus; temporal areas: superior
temporal gyrus, middle temporal gyrus, inferior temporal gyrus, transverse
temporal gyrus; limbic areas; anterior cingulate cortex, insula, extra nuclear,
parahippocampla gyrus, uncus, cingulate gyrus). We selected these brain
regions on the basis of the former neuroimaging and ERP source
localization studies for MMN generator [37–44], and the results of MMN
source activities showing significant differences between the two groups
in our data.

Classification was performed using a linear support vector machine
classifier with the cost set as 1 [45–47] and the classification accuracy was
evaluated using a leave-one-out cross-validation method for each feature
set. Linear support vector machine has been widely applied in multivariate
pattern analysis with its high accuracy, generalization, and interpretability
[48–50]. Many studies have used the leave-one-out cross-validation
method claiming that it is more appropriate for small data since more
data can be trained for a classification model and that it imitates clinical
setting where clinicians can learn from large data and apply the findings to
new each case [51–53]. In order to decrease the computational cost and
prevent potential overfitting by the large number of features, the Fisher
score was used for feature selection [54, 55]. For each cross-validation, the
Fisher score was used to select the best feature subset for the current
training dataset. A higher Fisher score for each feature represents better
separability between the two groups. Different numbers of features with
higher Fisher scores ranging from 1 to 20 were respectively examined for
classification between the two groups [56]. Finally, the classification
performances including accuracy, sensitivity, and specificity were averaged
in the leave-one-out cross-validation.
In addition, 1000 times permutation test (group label permutation) were

performed to assess the statistical significance of our classification
accuracy [47, 57, 58]. We labeled each participant to two groups randomly,
trained and tested the support vector machine classifier with this random
labeling, and calculated the accuracy from the classification model. A
MATLAB toolbox, Pattern Recognition Tools 5 (http://37steps.com) for the
machine learning analyses.

RESULTS
Demographic and psychological characteristics
Table 2 presents the demographic and psychological character-
istic comparison between the patients with ADHD and HCs. There
was a significant difference in education years. HCs showed
significantly higher education years than patients with ADHD (p <
0.001). In addition, there were significant differences in ASRS
scores between the two groups, such that the patients with ADHD
showed significantly higher ASRS (p < 0.001) and its subscales,
including inattention (p < 0.001) and hyperactivity (p < 0.001).

Mismatch negativity
The patients with ADHD showed significantly reduced MMN peak
amplitudes compared to HCs at the FCz (p < 0.001), FC4 (p <
0.001), C3 (p < 0.001), Cz (p < 0.001), and C4 (p < 0.001) electrodes.
However, there was no significant difference in MMN latency
between the two groups. Figure 1 shows the grand-average
waveforms and topographical distributions for MMN in each
group.

Source analysis
Adult patients with ADHD revealed significantly decreased MMN
source activities compared to HCs in the right middle frontal
gyrus, right medial frontal gyrus, bilateral anterior cingulate cortex,
bilateral inferior frontal gyrus, right superior temporal gyrus, right
inferior temporal gyrus, bilateral insula, bilateral extra nuclear,
bilateral orbital gyrus, bilateral parahippocampal gyrus, bilateral

Table 1. All MMN features including sensor and source levels for
classification between adult ADHD patients and healthy controls.

Classification features

Sensor level (18 features) Source level (34 features)

MMN peak amplitude MMN source activity

FC3 peak amplitude Frontal lobe

FCz peak amplitude Bilateral superior frontal gyrus

FC4 peak amplitude Bilateral middle frontal gyrus

F3 peak amplitude Bilateral medial frontal gyrus

Fz peak amplitude Bilateral inferior frontal gyrus

F4 peak amplitude Bilateral orbital gyrus

C3 peak amplitude Bilateral subcallosal gyrus

Cz peak amplitude Bilateral rectal gyrus

C4 peak amplitude Temporal lobe

MMN peak latency Bilateral superior temporal gyrus

FC3 peak amplitude Bilateral middle temporal gyrus

FCz peak latency Bilateral inferior temporal gyrus

FC4 peak latency Bilateral transverse temporal gyrus

F3 peak latency Limbic lobe

Fz peak latency Bilateral anterior cingulate cortex

F4 peak latency Bilateral insula

C3 peak latency Bilateral extra nuclear

Cz peak latency Bilateral parahippocampal gyrus

C4 peak latency Bilateral uncus

Bilateral cingulate gyrus

ADHD attention-deficit/hyperactivity disorder, MMN mismatch negativity.

Table 2. Demographic characteristics of study participants.

ADHD (N= 34) HC (N= 45) P

Age (years) 24.76 ± 7.02 25.51 ± 5.48 0.597

Sex 0.792

Male 28 (82.4) 36 (80.0)

Female 6 (17.6) 9 (20.0)

Education (years) 12.82 ± 1.40 14.36 ± 2.31 <0.001

Adult ADHD Self-Report
Scale (ASRS)

42.12 ± 11.13 10.60 ± 8.98 <0.001

Inattention 24.21 ± 5.84 7.27 ± 5.61 <0.001

Hyperactivity 17.91 ± 6.15 3.33 ± 4.09 <0.001

ADHD attention-deficit/hyperactivity disorder, HC healthy control.
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rectal gyrus, bilateral subcallosal gyrus, and bilateral uncus (p <
0.001; Table 3, Fig. 2).

Correlation between MMN characteristics and ADHD
symptoms
Correlation analysis detected significant correlations between the
MMN source activities and ADHD symptoms in the study
population: (1) ASRS: left anterior cingulate cortex (r=−0.427,
p < 0.001), right anterior cingulate cortex (r=−0.435, p < 0.001),
right inferior frontal gyrus (r=−0.428, p < 0.001), right superior
temporal gyrus (r=−0.385, p < 0.001), right extra nuclear (r=
−0.413, p < 0.001), left orbital gyrus (r=−0.401, p < 0.001), right
orbital gyrus (r=−0.428, p < 0.001), left rectal gyrus (r=−0.418,
p < 0.001), right rectal gyrus (r=−0.440, p < 0.001), left subcallosal
gyrus (r=−0.408, p < 0.001), right subcallosal gyrus (r=−0.446, p

< 0.001), right uncus (r=−0.401, p < 0.001); (2) inattention: left
anterior cingulate cortex (r=−0.417, p < 0.001), right anterior
cingulate cortex (r= −0.435, p < 0.001), right inferior frontal gyrus
(r=−0.424, p < 0.001), right extra nuclear (r=−0.394, p < 0.001),
left orbital gyrus (r=−0.396, p < 0.001), right orbital gyrus (r=
−0.434, p < 0.001), left rectal gyrus (r=−0.412, p < 0.001), right
rectal gyrus (r=−0.440, p < 0.001), left subcallosal gyrus (r=
−0.393, p < 0.001), right subcallosal gyrus (r=−0.430, p < 0.001),
right uncus (r=−0.388, p < 0.001); (3) hyperactivity: left anterior
cingulate cortex (r=−0.413, p < 0.001), right anterior cingulate
cortex (r=−0.409, p < 0.001), right inferior frontal gyrus (r=
−0.407, p < 0.001), right extra nuclear (r=−0.410, p < 0.001), left
orbital gyrus (r=−0.384, p < 0.001), right orbital gyrus (r=
−0.396, p < 0.001), left rectal gyrus (r=−0.401, p < 0.001), right
rectal gyrus (r=−0.413, p < 0.001), left subcallosal gyrus (r=

Fig. 1 Topographical distributions and grand-average waveforms for mismatch negativity (MMN) in adult patients with ADHD and
healthy controls. (A) Topographic maps of MMN, and (B) Grand average of MMN waveforms at FCz and Cz electrodes.

Table 3. Mean values and standard deviations of MMN source activities in brain regions showing the best classification performances from the
source-level feature set between adult ADHD patients and healthy controls.

Region of Interest ADHD (N= 34) HC (N= 45) Effect size (η2) P

Left

Anterior cingulate cortex 2.74 ± 1.96 6.36 ± 3.54 0.227 <0.001

Inferior frontal gyrus 2.79 ± 1.62 5.46 ± 2.87 0.191 <0.001

Rectal gyrus 4.46 ± 3.59 10.53 ± 6.17 0.216 <0.001

Subcallosal gyrus 2.22 ± 1.66 5.45 ± 2.97 0.263 <0.001

Extra nuclear 2.16 ± 1.41 4.20 ± 2.23 0.188 <0.001

Orbital gyrus 5.84 ± 4.65 12.98 ± 7.99 0.181 <0.001

Right

Anterior cingulate cortex 2.72 ± 1.92 6.16 ± 3.46 0.208 <0.001

Inferior frontal gyrus 2.64 ± 1.78 5.15 ± 2.23 0.256 <0.001

Rectal gyrus 4.68 ± 3.80 11.19 ± 6.44 0.222 <0.001

Subcallosal gyrus 1.99 ± 1.52 5.13 ± 2.65 0.301 <0.001

Extra nuclear 2.08 ± 1.50 4.44 ± 2.09 0.298 <0.001

Orbital gyrus 5.71 ± 4.73 12.90 ± 7.64 0.192 <0.001

Uncus 2.13 ± 1.69 5.19 ± 2.99 0.248 <0.001

Superior temporal gyrus 1.74 ± 1.10 3.19 ± 1.43 0.237 <0.001

ADHD attention-deficit/hyperactivity disorder, HC healthy control, MMN mismatch negativity.
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−0.401, p < 0.001), right subcallosal gyrus (r=−0.438, p < 0.001),
right uncus (r=−0.393, p < 0.001) (Fig. 3). There was no significant
correlation between MMN sensor-level features and ADHD
symptom scores.

Classification results
Table 4 presents the best classification performances between
adult ADHD patients and HCs for three different feature sets
(sensor-level, source-level, and both sensor and source levels). For
the sensor-level feature set, the best classification accuracy was
78.48% with three features: MMN amplitudes at FCz, FC4, and Cz
electrodes. In terms of source-level feature set, the best
classification accuracy was 81.01% with 14 features, MMN source
activities in the bilateral anterior cingulate cortex, bilateral inferior
frontal gyrus, bilateral rectal gyrus, bilateral subcallosal gyrus,
bilateral extra nuclear, bilateral orbital gyrus, right uncus, and right
superior temporal gyrus. For both sensor and source levels, the
best classification accuracy was 81.01% with 16 features, MMN
amplitude at FC4 and MMN source activities in the bilateral
anterior cingulate cortex, bilateral inferior frontal gyrus, bilateral
rectal gyrus, bilateral subcallosal gyrus, bilateral extra nuclear,
bilateral orbital gyrus, bilateral uncus, and right superior temporal
gyrus.
The permutation test results demonstrated that our classifica-

tion accuracies were significant. The classification accuracies from
the original data were higher than all the 1000 classification

accuracies from the permutation test for the three different
feature sets (mean ± 2 standard deviation; sensor-level: 54.92 ±
9.60%, source-level: 52.47 ± 13.96%, both sensor and source levels:
52.03 ± 15.21%).

DISCUSSION
In this study, we investigated MMN abnormalities, indicative of
pre-attentive central processing of auditory change detection, in
drug-naive adult patients with ADHD and differentiated ADHD
patients and HCs based on machine learning methods. Our major
findings are as follows. First, the patients with ADHD showed
significantly reduced MMN amplitudes at the frontocentral
electrodes compared to HCs. Second, the patients exhibited
significantly decreased MMN source activities in the frontal,
temporal, and limbic regions. Third, MMN source activities were
negatively correlated with ADHD symptom scores in the study
population. Fourth, the best classification performance for adult
ADHD patients and HCs was an 81.01% accuracy, an 82.35%
sensitivity, and an 80.00% specificity from the MMN source activity
features.
The MMN amplitudes were attenuated in adult patients with

ADHD compared to HCs at the frontocentral electrodes. Although
there has been no previous study exploring MMN in adult patients
with ADHD, our results are comparable to those of previous
studies showing decreased MMN amplitudes in children and

Fig. 2 Brain regions showing the best classification performances from the source-level feature set between adult ADHD patients and
healthy controls. (A) Anterial cingulate cortex, (B) Inferior frontal gyrus, (C) Rectal gyrus, (D) Subcallosal gyrus, (E) Extra nuclear, (F) Orbital
gyrus, (G) Uncus, and (H) Superior temporal gyrus.
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adolescent patients with ADHD [7, 17, 59]. Given the notion that
MMN reflects pre-attentive detection related to cognitive status
[9, 10], the attenuated MMN amplitudes suggest that adult
patients with ADHD also suffer from dysfunctional pre-attentive
processes. Moreover, MMN has been thought to reflect informa-
tion processing more accurately than the P300 ERP component,
and has been closely related to attention deficit [59]. Although the
MMN is not subject to conscious control, the changes in MMN in
adult patients with ADHD might reflect the dysfunctional
attentional process of ADHD [60, 61]. Impairments in deviance
detection might cause significant dysfunctions in higher-order
cognitive functioning, affecting the inattentive and hyperactive
symptoms of patients with ADHD.

Fig. 3 Correlation between mismatch negativity (MMN) characteristics and ADHD symptoms. Correlations between MMN source activities
in anterior cingulate cortex, inferior frontal gyrus, rectal gyrus, and subcallosal gyrus and ADHD symptom scores in all participants.

Table 4. The best classification performances (%) of adult ADHD
patients and healthy controls for three different feature sets (sensor-
level, source-level, and both sensor- and source-levels).

ADHD vs. HC

Accuracy Sensitivity Specificity

Sensor level 78.48 70.59 84.44

Source level 81.01 82.35 80.00

Sensor level+ source level 81.01 79.41 82.22

ADHD attention-deficit/hyperactivity disorder, HC healthy control.
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In this study, adult patients with ADHD showed significantly
reduced MMN source activities compared to HCs in the frontal
lobe (right middle frontal gyrus, right medial frontal gyrus,
bilateral inferior frontal gyrus, bilateral orbital gyrus, bilateral
subcallosal gyrus, bilateral rectal gyrus), temporal lobe (right
superior temporal gyrus, right inferior temporal gyrus), and limbic
lobe (bilateral anterior cingulate cortex, bilateral insula, bilateral
extra nuclear, bilateral parahippocampal gyrus, bilateral uncus). In
addition, reduced source activities in the bilateral anterior
cingulate cortex, right inferior frontal gyrus, right superior
temporal gyrus, right extra nuclear, bilateral orbital gyrus, bilateral
rectal gyrus, bilateral subcallosal gyrus, and right uncus were
negatively correlated with the ADHD symptom scales in the study
population.
In general, auditory MMN is produced in the primary auditory

cortex and adjacent areas of the superior temporal lobe [42, 62].
The frontal areas, including the anterior cingulate cortex and
middle and inferior frontal gyrus, are also considered MMN
generators [39, 42, 63–65]. Temporal generators are related to
auditory feature analysis and deviance detection, and frontal
generators with involuntary switching of attention toward
changes in the auditory environment [38, 66]. In particular, frontal
generators have been associated with a cognitive role or
comparator-based mechanism of MMN [67–69].
Regions in which we found dysfunctional MMN source

activities and significant symptomatic correlations were areas of
focus in several previous ADHD studies. According to previous
neuroimaging studies, the development of ADHD was closely
associated with impaired frontal lobe function [70, 71]. Altered
neurochemistry in the anterior cingulate cortex is thought to be
an important cause of behavioral symptoms of ADHD [72].
Structural abnormalities such as smaller volume and reduced
cortical thickness in the anterior cingulate cortex have been
observed in both children and adult patients with ADHD than in
HCs [73–77]. In a variety of cognitive tasks, patients with ADHD
have shown abnormal performance that might be specifically
linked to structural and/or functional anomalies in the anterior
cingulate cortex [78, 79].
In addition, several studies have highlighted that the inferior

frontal gyrus is crucial for inhibiting behavioral responses related
to impulsivity and hyperactivity [80, 81]. Opitz et al. [82] suggested
that the inferior frontal gyrus might be associated with an
involuntary amplification or contrast enhancement mechanism,
regulating the auditory change detection system. Bayard et al.
reported that ADHD symptoms were negatively correlated with
gray matter volume in the bilateral inferior frontal cortex [83]. In
terms of the orbitofrontal region, including the orbital gyrus,
cortical thinning and volumetric reduction of this region have
been reported in adult patients with ADHD [74, 84]. In addition,
the orbitofrontal region was revealed to be primarily related to
emotional instability and impulsivity in ADHD [84, 85].
Furthermore, the insula is known to play a generic role in

updating information and cognitive control, including attention
allocation to behaviorally relevant salient stimuli [86–88]. The
functions mediated by the insula are consistently impaired in
ADHD, such as cognitive control, sustained attention, and saliency
detection [89, 90]. One previous volumetric study revealed that
youths with ADHD showed a bilateral reduction in the insula
region associated with attention problems and inhibition [91]. The
superior temporal region has been reported to be abnormal in
ADHD. Imaging studies using oddball involuntary attention tasks
showed reduced activation in the bilateral superior temporal gyrus
in adolescents with ADHD [92, 93]. Previous studies have
demonstrated that there are delays in cortical maturation in the
bilaterally superior temporal gyrus of ADHD patients that could
affect the control of attention [94, 95].
These abnormal regions belonging to frontal, temporal, and

limbic lobes are highly related to the pathophysiology of ADHD.

The previous findings support our results regarding altered source
activation for MMN in adult ADHD patients and correlations
between source activation and ADHD symptom scores. Decreased
MMN source activation in adult patients with ADHD could be
interpreted as decreased efficiency of automatically regulated
attentional processes and increased demand for more effort and
resources.
We applied machine learning methods to classify adult ADHD

patients and HCs using sensor- and source-level features extracted
from MMN ERP data. The best classification performance was
achieved when source-level features were used (accuracy: 81.01%,
sensitivity: 82.35%, sensitivity: 80.00%). According to our results,
the source-level features from MMN might play a more important
role in the classification of ADHD patients and HCs than the
sensor-level features. This might be due to the notion that the
shortcoming of sensor-level features could be supplemented by
source-level features such as low spatial resolution originating
from volume conduction and poor signal-to-noise ratio [96–98].
Thus, the improved spatial information from the source-imaging
method might contribute to the enhanced classification perfor-
mance. When the best classification performance was achieved in
the classification of the patients and HCs using source-level
features, 14 regions were selected (bilateral anterior cingulate
cortex, bilateral inferior frontal gyrus, bilateral rectal gyrus,
bilateral subcallosal gyrus, bilateral extra nuclear, bilateral orbital
gyrus, right uncus, and right superior temporal gyrus). MMN
source activation in the frontal, temporal, and limbic lobes was
dysfunctional in adult ADHD patients. Our results suggest that the
reduced MMN activations in these regions could be utilized as
important neuromarkers for classifying adult ADHD patients from
HCs and could help to elucidate the neural mechanism of adult
ADHD during pre-attentive processing.
Moreover, when we used both sensor- and source-level features

for the classification of adult ADHD patients and HCs, we obtained
a classification accuracy of 81.01%, which was the same value as
that from source-level features. However, the sensitivity was
higher for source-level features (82.35%) than for both sensor- and
source-level features (79.41%). In the clinical setting, the value of
sensitivity, referring to the ability to correctly identify patients with
the disease, could be considered more important [99]. Therefore,
although the accuracies from source-level features and both
sensor- and source-level features were the same, the source-level
features might play a more crucial role in the clinical setting as
biomarkers for adult ADHD patients.
In this study, a number of MMN features including sensor and

source levels showed significant between-group differences based
on the univariate analysis method (p < 0.001). The statistics for the
univariate analyses were calculated based on the differences of
mean and standard deviation between two groups. Thus, even
though the data distribution of the two groups from the features
was overlapped, the features could show significant between-
group differences with their mean and standard deviation
differences. However, to achieve higher classification perfor-
mances using machine learning, the distribution of data between
two groups should be less overlapped. We achieved the
classification accuracy of 81.01% between adult ADHD patients
and HCs using the source-level feature set. This classification
accuracy was acceptable and we found that the accuracy was
significantly based on the permutation test. Since our study was
the first to investigate MMN changes in adult patients with ADHD,
further studies with a larger number of adult patients with ADHD
are warranted to verify our findings.
This study has several limitations. First, when interpreting the

results, the relatively small sample size should be considered. Further
studies are warranted to validate the findings with larger samples.
Second, the patient group and HCs were not matched for education
years. However, the difference in education years between the
groups has been accepted in recent studies [100], and we controlled
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the variable as a covariate in our statistical analyses. Third, we did not
implement individual head models for EEG source imaging. Despite
the above limitations, this study is noteworthy as the first attempt to
investigate the differences in MMN activities in adult patients with
ADHD and HCs. Altered MMN features at both the sensor and source
levels were found in ADHD patients compared to HCs, and significant
correlations between MMN source activities and ADHD symptom
scores were observed. Furthermore, we achieved acceptable
classification performances using MMN features for discriminating
between the groups. Our results showed the possibility of MMN
features as biomarkers for adult ADHD patients, suggesting that the
MMN might offer additional useful information for detecting patients
in the clinical setting. As a future study, we will attempt to improve
classification performances based on deep-learning techniques with
larger sample sizes.
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