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Sex differences in stress reactivity in arousal and attention
systems
Debra A. Bangasser1, Samantha R. Eck1 and Evelyn Ordoñes Sanchez1

Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress
disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and
attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate
symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias
women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males,
females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits.
Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render
the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition
found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in
sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to
the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
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INTRODUCTION
There are sex differences in the prevalence and presentation of
many psychiatric disorders. For example, although men report
more traumatic experiences than women, the rate of posttraumatic
stress disorder (PTSD) diagnosis is still twice as high in women as in
men [1, 2]. Similarly, women are more frequently diagnosed with
major depression than men [3, 4]. Another shared feature of PTSD
and depression is hyperarousal, which is a defining cluster of
symptoms in PTSD and contributes to certain features of
depression (e.g., agitation, restlessness, sleep disruptions, rumina-
tions, etc.) [5]. Compared to men, women with PTSD and
depression have more hyperarousal symptoms, such as disrupted
sleep, concentration difficulties, and increased ruminations [6–15].
These findings highlight hyperarousal as a key difference in the
presentation of these disorders between the sexes.
Women are not always the more vulnerable sex when it comes

to psychiatric disorders. Women are less frequently diagnosed
than men with attention deficit hyperactivity disorder (ADHD) and
schizophrenia, and women that suffer from schizophrenia typically
develop it 3–5 years later in life than men [16, 17]. Patients with
ADHD and schizophrenia suffer cognitive deficits, and there are
sex differences in the presentation of these deficits. For example,
attention deficits and hyperactivity are greater in males than in
females with ADHD [18–21]. In schizophrenia, cognitive deficits
are reported in both sexes, but their presentation is often different
[22]. With the exception of visual working memory, studies
typically find that male schizophrenia patients have greater
cognitive deficits than females [22, 23]. There are several reports
of greater attention impairments in males relative to females with
schizophrenia [24–27], although other studies fail to find this sex
difference [16, 28–30]. These inconsistencies are likely attributable

to sex-specific changes in attention that occur over time, because
a longer duration of illness is associated with reduced attention in
men [22, 30]. When considering the clinical data together, it is
apparent that despite the differences in symptoms that distin-
guish psychiatric disorders, there are some commonalities
between psychiatric disorders with a sex bias. Namely, women
are more likely to suffer from psychiatric disorders with
hyperarousal as a symptom, while men are more likely to suffer
from disorders with attention deficits.
One environmental factor that is associated with the onset and

severity of a variety of psychiatric disorders is stress [31]. Exposure
to a traumatic event is the precipitating factor for PTSD [5].
Additionally, chronic stress is associated with the onset of
depression and schizophrenia and can exacerbate the symptoms
of these disorders, as well as symptoms of ADHD [32–35]. The
association between stress and disorders that are sex-biased
implicates sex differences in stress responses as a factor that can
drive distinct types of psychopathology in men and women. This
review will detail preclinical data that demonstrate how stress can
regulate the locus coeruleus (LC)-norepinephrine (NE) arousal
system to shift females more easily than males into a state of
hyperarousal. We will also describe how ovarian hormones
promote female resilience to stress-induced attentional disrup-
tions mediated by the basal forebrain cholinergic system.
Importantly, a better understanding of sex-specific mechanisms
for responding to stress can ultimately guide the development of
better treatments for psychiatric disorders in men and women.

Sex differences in the LC-NE system
The pontine LC nucleus regulates arousal via its efferent projection
system that releases NE throughout the neuroaxis [36–39]. In fact,

Received: 27 February 2018 Revised: 21 May 2018 Accepted: 15 June 2018
Published online: 29 June 2018

1Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
Correspondence: Debra A. Bangasser (debra.bangasser@temple.edu)

www.nature.com/npp

© American College of Neuropsychopharmacology 2019

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-018-0137-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-018-0137-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-018-0137-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-018-0137-2&domain=pdf
mailto:debra.bangasser@temple.edu
www.nature.com/npp


the LC is the sole source of NE for the cortex and hippocampus,
regions critically involved in cognition and stress responsivity [39–
41]. NE release is correlated with arousal and driven by the firing
of LC neurons [39, 42]. These neurons discharge in a tonic mode
and the rate of tonic firing is positively correlated with
electroencephalographic (EEG) activity and behavioral indices of
arousal [43–45]. Additionally, sensory stimuli evoke phasic
responses, or bursts of synchronous firing, from LC neurons [46,
47]. There are no sex differences in the tonic or phasic firing of LC
neurons under unstressed conditions [48–50]. However, the LC of
humans and certain rat strains is comprised of more neurons in
females than males [51–56]. Thus, despite the similar electro-
physiological properties of LC neurons in both sexes, the sex
difference in LC size suggests that the female LC has a greater
capacity to synthesize and release NE in target regions to increase
arousal.
The LC is a target of estrogenic regulation, as it contains

estrogen receptors (ERs) [57, 58]. Moreover, estradiol has been
shown to regulate aspects of NE synthesis and degradation (Fig. 1,
for review see[59]). Specifically, estradiol treatment of ovariecto-
mized female rats increases tyrosine hydroxylase (TH), the rate-
limiting enzyme of catecholamine synthesis, as well as dopamine
β-hydroxylase (DBH), which catalyzes the formation of NE from
dopamine [60, 61]. These effects occur through direct regulation
of the th and dbh genes via estrogen response elements (ERE) on
their promoters [61–63]. Estradiol can also reduce the breakdown
of NE via its regulation of catechol-O-methyltransferase (COMT),
an enzyme that degrades catecholamines. Estrogens decrease
COMT activity in cell culture and COMT levels are lowest in the
proestrous phase of the cycle, when estrogens are highest [64, 65].
The estrogenic regulation of COMT may explain why COMT
activity is lower in the prefrontal cortex of women compared to
men [66]. Collectively, these findings reveal that estradiol
increases NE synthetic enzymes, while decreasing degradative
enzymes, effects that can account for the finding that estradiol
treatment increases NE in target regions [60, 67].

The increase in NE by estradiol could suggest that activation of
the NE system increases arousal more in adult females than males.
Additionally, estradiol reduces α2-adrenergic receptors in the
cortex [68], which are presynaptic in this region and serve to
inhibit NE release [69]. This estradiol-induced receptor alteration
could further promote cortical NE release in females. However,
conditions of high estradiol have also been associated with a
reduction in postsynaptic β1-adrenergic receptors in the cortex
and striatum [70, 71], but see [72]. These reductions in
postsynaptic adrenergic receptors due to estradiol may be
compensatory for the estradiol-induced increase in NE, making
the net effect of NE similar for males and females. The fluctuation
of estradiol during a female’s reproductive years suggests
frequent, cyclical changes in NE levels, and adrenergic receptor
expression. This dynamic regulation may be more prone to error
than a system that maintains NE and adrenergic receptor levels in
a stable state. A failure of estradiol to decrease postsynaptic
adrenergic receptor expression, for example, could lead to too
much NE tone, increasing arousal. More data are needed,
however, to determine whether circuits modulated by cyclical
hormones are more prone to dysregulation than those not
influenced by cyclical hormones. Additionally, although data do
indicate that estradiol alters α2-adrenergic receptors in cortex but
not hypothalamus [68], much more research is needed to
determine whether estradiol regulation of adrenergic receptors
is restricted to brain regions involved in arousal and cognition, or
more widespread.
Unlike studies on estrogens, the role of testosterone in

regulating NE synthesis and release has not been extensively
investigated. However, there is evidence that gonadectomizing
male rats increases TH in the LC [73]. This result suggests that
testosterone normally suppresses TH, which would thereby reduce
NE synthesis. This suppression could happen via direct regulation
of LC by testosterone, because androgen receptors are present in
the LC [74]. There is some evidence to suggest testosterone alters
presynaptic adrenergic receptors. Specifically, testosterone
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Fig. 1 This schematic shows how estradiol and testosterone regulate the LC-NE system. Estradiol enhances NE activity by increasing NE
production in LC neurons (blue), decreasing COMT-dependent NE degradation, and reducing presynaptic adrenergic receptors that inhibit NE
release. As a possible compensatory action, estradiol also reduces adrenergic receptors on postsynaptic neurons (green). In contrast,
testosterone reduces TH, the NE synthetic enzyme, while increasing presynaptic adrenergic receptors that inhibit NE release. DA dopamine,
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treatment of castrated male rats up-regulates α2-adrenergic
receptor mRNA in cortex, an effect that would reduce NE release
[75]. Collectively, the limited data on testosterone’s regulation of
the LC-NE system suggest that, opposite to estradiol’s effects,
testosterone reduces NE synthesis and release. Given that males
have higher testosterone levels than females, this effect could
translate into lower levels of NE in males compared to females.
In addition to factors that can differentially affect LC output in

males vs. females, there are structural sex differences in LC
dendrites that can affect the processing of LC inputs [49, 76]. LC
afferents are topographically organized, such that inputs carrying
mainly autonomic information from the brainstem synapse on
dendrites in the LC core, which is the main cluster of NE-
containing cell bodies [77, 78]. Yet LC dendrites are not restricted
to the core, but also extend into the dorsolateral and ventromedial
pericoerulear (peri-LC) regions [79, 80]. Inputs from the paraven-
tricular nucleus of the hypothalamus (PVN) synapse on dendrites
in the core, as well as dorsolateral peri-LC [81]. Structures that are
part of the extended amygdala, including the central nucleus of
the amygdala (CeA) and bed nucleus of the stria terminalis (BNST),
carry emotion-related information to the dorsolateral peri-LC [81–
84]. The ventromedial peri-LC receives inputs from the nucleus of
the solitary tract and periaqueductal gray [81, 84, 85]. This
topographic organization of inputs is important to consider in the
context of sex differences in dendritic morphology. Female rats
and mice have longer and more complex LC dendrites than males
[49, 76]. The shorter dendrites in males would be expected to
adequately receive inputs to the LC core, but they may not contact
as many inputs in the peri-LC as the longer dendrites of females,
which expand further into this region. Consistent with this
circuitry, immunoreactivity for the synaptic vesicle protein,
synaptophysin, is denser in the dorsolateral peri-LC region in
female relative to male rats [76]. This result suggests that,
compared to the male LC, the female LC integrates more
information from extended amygdala and hypothalamic inputs.
Given that these inputs are critical for processing both positive
and negative salient stimuli, this morphological sex difference in
LC dendrites could increase female arousal in response to
emotional events. During a stressor, this sex difference could
translate into greater arousal to the aversive stimulus. Consistent
with this idea, a human imaging study found that woman with

irritable bowel syndrome have greater activation of an amygdala-
LC circuit in response to an aversive visceral stimulus than men
with this disorder [86]. More studies are needed to determine
whether similar sex differences in amygdala-LC connectivity are
found in response to other types of aversive stimuli in humans.

Sex differences in stress regulation of the LC
Stressor exposure can increase arousal. The mechanism by which
this effect occurs involves the regulation of the LC-NE system by
the stress neuropeptide, corticotropin releasing factor (CRF) [87–
90]. During a stressful event, CRF is released into the LC, which
causes LC neurons to change their firing to a high tonic-low phasic
mode [87, 89, 91, 92]. This mode of firing increases cortical EEG
and can shift behavior such that an animal changes from focusing
on a stimulus to scanning the environment [93, 94]. Scanning the
environment for potential threats is typically an adaptive response
to stress. However, if this shift occurs inappropriately or
persistently it can cause irrelevant stimuli in the environment to
elicit responses, resulting in a state of hyperarousal.
There are sex differences in CRF regulation of LC-NE physiology

[48, 50]. When CRF is applied locally into the LC, certain doses of
CRF that fail to activate LC neurons of male rats increase the firing
rate of LC neurons in female rats. In fact, the CRF-dose–response
curve for LC activation is shifted to the left in females compared to
males, indicating that female LC neurons are more sensitive to
CRF. As noted, CRF mediates stress effects on the LC, therefore it is
not surprising that female LC neurons are also more sensitive to
activation by hypotensive stress than male LC neurons [50]. This
electrophysiological sex difference would lead to greater arousal
in response to stress in females than males. Surprisingly, gonadal
hormones do not regulate the physiological sex difference in LC
sensitivity [48, 50]. Therefore, this sex difference must be
established either by hormonal surges earlier in development or
by the different complement of genes on the sex chromosomes
[95].
The sex difference in LC firing to local CRF administration

indicates that there is something different about male and female
postsynaptic responses to CRF, which are mediated by CRF1
receptors in the LC [96, 97]. The CRF1 receptor is promiscuous and
can couple to multiple signaling proteins, but it typically binds Gs
to activate the cAMP-PKA signaling cascade [98–100]. In the LC,
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Fig. 2 Sex differences in CRF1 receptor signaling and trafficking in LC neurons (blue). In males, CRF1 receptors bind βarrestin2 and signal
through small GTPases signaling pathways, such as Rho. This βarrestin2 binding is associated with CRF1 receptor internalization in males. In
females, CRF1 receptors couple to the Gs protein to initiate cAMP-PKA signaling and their receptors do not internalize following stress or CRF
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activation of cAMP-PKA signaling mediates the increase in
neuronal firing following CRF administration [97]. Thus, increased
activation of this pathway in females, compared to males, could
explain their greater LC response to CRF. One way that females
could increase cAMP-PKA signaling would be through increased
coupling of CRF1 receptors to Gs. Indeed, we found greater
CRF1–Gs coupling in female than male rats (Fig. 2) [48]. Consistent
with this result, the CRF-induced increase in LC firing in females is
completely cAMP-PKA mediated, highlighting the prominence of
this pathway [50]. In contrast, this pathway only partially mediates
the CRF-induced increase in LC firing in males. This result suggests
that, not only are there sex differences in the amount of cAMP-
PKA signaling, but there are sex differences in the types of
signaling cascades activated by the CRF1 receptor.
We further tested the idea that the CRF1 receptor signals

through different pathways in males and females using CRF
overexpressing (CRF-OE) mice, which were designed to model the
CRF hypersecretion that occurs in patients with PTSD and
depression [101–103]. The high levels of CRF in these mice lead
to CRF receptor activation, which we assessed with phosphopro-
teomic analysis of cortical tissue, which contains the CRF1 receptor
subtype and sufficient material for proteomics [104, 105]. This
approach allowed us to assess sex differences in activated
signaling pathways by determining differences in their phosphor-
ylation following CRF hypersecretion. Not surprisingly, the
proteins in the cAMP-PKA signaling pathways were enriched for
phosphopeptides in female CRF-OE mice. This result suggests
greater activation of this pathway in females, a finding which is
consistent between the LC and cortex. In males, however, CRF
hypersecretion enriched phosphopeptides in small GTPases
signaling pathways, including Rho (Fig. 2). Activation of Rho is
not downstream of Gs, suggesting that other proteins must drive
this signal transduction in males. One signaling molecule that can
activate small GTPases is βarrestin2 [106, 107]. Interestingly,
βarrestin2 binds to the CRF1 receptor at low levels in both sexes in
the unstressed state, but stress increases the association of the
CRF1 receptor with βarrestin2 only in male rats [48]. Thus, when
considered together these studies reveal that the CRF1 receptor
signals more through the Gs-cAMP-PKA-mediated pathways in
females and more through βarrestin2-small GTPase-mediated
pathways in males [108, 109]. The data from the cortex and LC
reveal a similar pattern of sex-biased CRF1 receptor signaling in
both regions, but it remains to be determined whether these sex
differences occur consistently throughout the brain or whether
they are region specific.
Cellular signaling pathways can have distinct functions. Thus,

sex differences in CRF1 receptor signaling can bias males and
females towards different physiological responses, some of which
may translate into differences in disease risk. As an example,
phosphorylated proteins in female CRF-OE mice are overrepre-
sented in Alzheimer’s disease (AD)-related pathways involved in
tau phosphorylation and amyloid processing [104]. In a mouse
model of AD pathology in which the mice express the human β-
site amyloid precursor, CRF overexpression increases the phos-
phorylation of β-secretase more in females than males [104]. β-
secretase is the enzyme involved in the formation of amyloid β
and CRF hypersecretion in this mouse model resulted in more
amyloid β plaque formation in females compared to males. These
studies highlight how activation of CRF1 receptors can lead to
different pathological consequences in males and females. Yet it is
likely that these effects are not limited to CRF1 receptors because
these receptors share similarities to many other G-protein-coupled
receptors (GPCRs) [110, 111]. Therefore, sex differences in
intracellular signaling may be an important, though under-
explored, mechanism that contributes to sex differences in
pathology.
In addition to signaling differently, CRF1 receptors are also

trafficked differently in LC dendrites of male and female rodents

(Fig. 2 [48, 49]). Like most GPCRs, CRF1 receptors internalize, or
move from the plasma membrane into the cytosol in response to
saturating concentrations of CRF [110, 112]. Once internalized,
these receptors can no longer be activated, which can be a
compensatory response that protects neurons from overactivation
in the presence of elevated levels of CRF release. CRF1 receptor
internalization is initiated when βarrestin2 binds to the receptor,
moving it into clathrin-coated pits for endocytosis [113, 114]. As
noted, stress increases βarrestin2-CRF1 receptor binding in male,
but not female rats [48]. Consistent with this finding, CRF1
receptor internalization was observed following stressor exposure
in the LC of male rats, an effect that was not observed in females
[48, 115]. A lack of CRF1 receptor internalization in females may
decrease their ability to adapt to conditions of CRF hypersecretion.
Indeed, there is evidence that LC neurons of male CRF-OE mice
adapt to excessive CRF release, such that their LC neurons fire at
wild type levels, despite high levels of CRF in their LC [49]. In
contrast, LC neurons of female CRF-OE mice do not adapt to
excess CRF and fire three times faster than wildtype mice. This
effect is linked to sex differences in CRF1 receptor internalization
[49]. Paralleling the findings in stressed rats [48], CRF1 receptors
internalize in male, but not female CRF-OE mice [49]. These studies
identified a mechanism underlying female vulnerability to
conditions of CRF hypersecretion and suggest that females may
experience more hyperarousal symptoms than males under
conditions of excessive CRF release.
Taken together, these studies reveal that the female LC is more

sensitive to stress and less adaptable to conditions of CRF
hypersecretion than the male LC. Moreover, recent work has
found that recovery from stress-induced LC activation, which is
mediated by µ-opioid receptors (MORs), is not as efficient in
females as in males, because females have lower levels of MORs
[116]. When considered along with the sex differences in LC
sensitivity to CRF, these findings reveal how the female LC-NE
arousal system has a greater and more persistent response to
stress than the arousal system of males. Perhaps in certain
circumstances this heightened arousal would be adaptive for
females, allowing them to better survey their environment for
threats. However, in response to protracted stress, a traumatic
event, or conditions of CRF hypersecretion, these sex differences
would make females more easily shift into the dysregulated state
of hyperarousal. If similar sex differences are found in the human
brain, they may help explain female vulnerability to disorders with
hyperarousal and CRF hypersecretion as a key feature, including
depression and PTSD [1, 3, 5, 101, 103].

Sex differences in other arousal systems
Arousal is not only mediated by the LC-NE system. Other
brainstem monoaminergic neurons (serotonergic, dopaminergic)
are involved, along with brainstem cholinergic centers [117, 118].
In addition, arousal is regulated by hypothalamic histaminergic
and orexigenic neurons, as well as brainstem and hypothalamic
GABA and glutamate [117]. Some sex differences in these circuits
have been reported. In the case of histamine, for example, there is
greater histamine receptor binding in female than male rats, an
effect that is linked to estradiol [119, 120]. Yet how stress regulates
histamine to alter arousal and any sex differences therein is
unknown. In contrast, there are data on sex differences in stress
regulation of serotonergic and dopaminergic systems; however,
these data do not focus on arousal, but rather domains, such as
depressive-like behavior and decision making (e.g. [121–124]).
Thus, unlike in the LC, how sex and stress interact to modulate
these other systems to regulate arousal has not been thoroughly
explored. Clearly more studies are warranted.
Recent work by Grafe and colleagues [125] on sex differences,

stress, and orexins is starting to address this gap. There are
baseline sex differences in the orexin system such that female rats
express more of the precursor, prepro-orexin, in the hypothalamus

Sex differences in stress reactivity in arousal and attention systems
DA Bangasser et al.

132

Neuropsychopharmacology (2019) 44:129 – 139



and have more orexin-A in their cerebrospinal fluid than male rats
[125, 126]. This sex difference can be further driven by stress
because the glucocorticoid receptor (GR) is enriched at the orexin
promoter of females relative to males [125]. This increased orexin
in females impacts their ability to adapt to repeated stress. Unlike
male rats, which habituate to repeated restraint stress, female rats
do not habituate to this repeated stressor exposure unless their
hypothalamic orexin neurons are inhibited [125]. This result
suggests that the elevated levels of orexins in females increase
their arousal, making them less able to adapt to multiple
exposures to the same stressor. One consequence of this sex
difference is that female rats have impaired cognitive flexibility
relative to male rats following repeated stress [125]. Inhibiting
hypothalamic orexin neurons in females prevents this deficit. If a
similar sex difference in orexin is found in humans, it could help
explain sex differences in disorders like major depression and
anorexia nervosa, where stress and deficits in cognitive flexibility
are risk factors [127–129].

Sex differences in the cholinergic-attention system
The basal forebrain is critical for cognition [130]. Although the
basal forebrain contains many types of neurons (e.g., GABAergic,
glutamatergic), it is characterized by the presence of cholinergic
neurons [131]. Cholinergic neurons in the medial septum (MS) and
the vertical limb of the diagonal band project to the hippocampus
to modulate mnemonic processes [132–134]. Cortically mediated
attentional processes are regulated by acetylcholine (ACh) [135–
137], and the sources of ACh for the cortex are the cholinergic
neurons in the nucleus basalis of Meynert (NBM), substantia
innominata, and the horizontal limb of the diagonal band of the
basal forebrain [131]. Detailed studies have investigated the role
of this cholinergic, basal forebrain corticopetal system in regulat-
ing sustained attention, the ability to detect intermittent and
unpredictable events [138–140]. Cholinergic neurons in the NBM
mediate the phasic release of cholinergic transients in the medial
prefrontal cortex (mPFC), which allows for the detection of

signaled events from non-signaled events in a sustained attention
task (SAT) [141–143]. Given the basal forebrain’s ability to regulate
memory and attention, it is not surprising that drugs targeting the
cholinergic system are used to treat cognitive deficits in AD [144–
146] and their therapeutic potential is also being assessed for
improving cognition in patients with schizophrenia and ADHD
[147, 148].
There are sex differences in the basal forebrain cholinergic

attention system. While there is a circadian release of ACh in both
males and females, females have greater overall ACh release than
males in cortical areas, including the mPFC (Fig. 3) [149, 150]. This
increased release in females may result from an increased
capacity of the NBM neurons to produce ACh. There is some
evidence that, compared to the male NBM, the female NBM
contains more neurons positive for choline acetyltransferase
(ChAT), the cholinergic synthetic enzyme [149, 150], but see [151].
This sex difference in ChAT positive neurons could mean that
females have more cholinergic neurons in this region and/or that
females produce more ChAT than males, making it easier to count
ChAT-positive neurons. Sex differences in ChAT production are
possible because ovarian hormones regulate ChAT. In primates,
ovariectomy reduces ChAT fibers in the PFC, which originate from
the NBM [152]. In rats, replacement of ovariectomized females
with estradiol increases ChAT-positive neurons in the NBM, as
well as ChAT activity in the PFC [153–155]. Estrogens are poised
to directly regulate NBM cholinergic neurons because these
neurons contain estrogen receptor alpha (ERα) and the G-protein
coupled estrogen receptor, GPR30 [151, 156, 157]. Estrogens are
thought to provide tropic support to cholinergic neurons via
modulation of neurotrophin receptors, including TrkA and TrkB, in
the NBM [158, 159]. In contrast to the regulatory effects of
estrogens on the basal forebrain cholinergic attention system, the
limited data on testosterone reveals that it does not regulate
ChAT in the NBM [160]. Collectively, these finding suggest that
females have a greater capacity than males to produce and
release ACh into cortical regions crucial for attention and that this
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sex difference is linked to estradiol regulation of cholinergic
neurons.
ACh exerts its effects through nicotinic ACh receptors (nAChRs)

and muscarinic ACh receptors (mAChRs), and there are sex
differences in their distribution (Fig. 3). In humans, healthy women
have more nAChRs containing the β2 subunit in their frontal
cortex than healthy men [161]. The β2 subunit most commonly
pairs with the α4 subunit to form α4β2 nAChRs in the frontal
cortex [162]. While rat α4β2 nAChRs lack an estrogen-binding site,
in humans, estradiol directly potentiates ACh-evoked responses by
binding to a site at the C-terminal tail of the α4 subunit of nAChRs
[163, 164]. Declining estrogen levels in postmenopausal females,
therefore, may be linked to lower ACh action [165]. Because
cognitive deficits in AD have been linked to declining nAChRs in
the cortex [166], this finding may help explain why older women
are more susceptible to developing AD symptoms than men,
though studies examining this possibility have reported conflict-
ing results [167].
Similar sex differences are seen in muscarinic ACh receptors

(mAChRs). Both human and rat studies have demonstrated that
there are more mAChRs in the frontal cortex of females than males
[168, 169]. Like nAChRs, mAChRs are also subject to estrogenic
regulation. Premenopausal women have greater mAChR density in
the frontal cortex than postmenopausal women, and estrogen
therapy increases mAChR density in the frontal cortex of
postmenopausal women [170]. Taken together, these studies
reveal that the female cortex not only receives more ACh release
than the male cortex, but it also has a greater capacity to respond
to that signal due to higher levels of both nAChRs and mAChRs.
Sex differences in the cholinergic, basal forebrain corticopetal

system could translate into sex differences in sustained attention.
In both male and female rats, accurate detection of signals in the
SAT task requires NBM cholinergic neurons [138]. Thus, both sexes
rely on this cholinergic circuitry to sustain attention. Surprisingly
though, sex differences are not observed in SAT performance [171,
172]. Perhaps there is a compensatory mechanism, which has yet
to be identified, that helps males maintain attention despite
having less cortical ACh and less capacity to respond to ACh.
Alternatively, molecular sex differences in the cholinergic atten-
tion system may not be drastic enough to result in sex differences
in behavior under normal conditions, but differences may emerge
when the system is pushed, as it would be with stress and stress
hormone exposure.
Our laboratory wanted to determine whether CRF disrupted

sustained attention in male and female rats. To this end, we
infused CRF throughout the brain and assessed performance on
SAT. We found that CRF dose-dependently decreases performance
on signal and non-signal trials in SAT and it has a similar effect in
both sexes [172]. However, further analysis revealed an effect of
estrous cycle phase in females [172]. CRF impairs SAT performance
when females are in cycle stages with lower levels of ovarian
hormones (i.e, diestrus I and II), but has no effect when females are
in the cycle stages with higher levels of ovarian hormones (i.e.,
proestrus and estrus). These findings suggest that high circulating
levels of ovarian hormones are protective against the negative
effect of CRF on sustained attention. Males that never have
elevated levels of ovarian hormones would not benefit from this
protection.
It is notable that this modulatory effect of cycle stage was not

observed in females when tested in the control condition (i.e.,
infused with the vehicle) [172]. Perhaps an increase in ChAT-
activity due to ovarian hormones does not have a measurable
effect on SAT when females are unstressed and performing the
task well, but does make a difference under conditions of CRF
release that would otherwise impair performance. Another
possibility is that ovarian hormones and the effects of CRF interact
to impact attention. We performed functional connectivity
analyses to assess circuits activated by central administration of

CRF (as measured by cFOS) and compared how sex and cycle
stage altered these circuits [173, 174]. Of relevance for SAT,
functional connectivity between the NBM and mPFC in rats
treated with CRF is different in proestrous females than in both
diestrous females and males. This result suggests an interaction
between ovarian hormones and CRF in the basal forebrain
corticopetal system. How this interaction occurs remains
unknown. Perhaps the downstream consequences of CRF receptor
signaling are mitigated by the activation of estrogen receptor
signaling, resulting in a neuroprotective effect. Another possibility
is that CRF receptors and GPR30 interact physically to change
signaling, which is possible because these receptors form
heterodimers in other brain regions [175]. More work is needed
to understand the mechanisms by which ovarian hormones
modulate CRF-induced attention deficits.
There is emerging evidence that chronic stress also disrupts

sustained attention. Over the course of the 6-day variable stressor
exposure, SAT performance declines [176]. This effect is especially
pronounced in male compared to female rats, and this sex
difference is more apparent when attentional demands are high.
How chronic stress alters attention circuitry and the cause of the
sex difference therein are being explored. Given that CRF is
released during chronic stress [177] and ovarian hormones protect
against the negative effects of CRF on SAT, it is likely that
circulating ovarian hormones similarly protect females against the
effect of chronic stress on attention. Future studies are needed to
test this idea.
Preclinical studies on stress impairments in attention are

limited, and aside from the aforementioned studies, previous
research has not considered females [178, 179]. However, the
observed male vulnerability to stress-induced attention deficits is
similar to prior work demonstrating male vulnerability to stress-
induced mnemonic deficits. Specifically, spatial and recognition
memory are impaired by chronic stress in male rodents [180–186].
In females, in contrast, chronic stress typically improves spatial
memory without affecting recognition memory [182, 183, 185–
188]. The ability to sustain attention is critical for these mnemonic
processes, so it is possible these sex differences in stress effects on
memory are driven, at least in part, by sex differences in stress
regulation of attention. Yet there are also sex-specific effects of
chronic stress on regions directly involved in memory, such as the
hippocampus [189, 190]. Dissociating stress effects on attention
from stress effects on mnemonic processes, and sex differences
therein, will be critical for developing more targeted interventions
for improving cognition.
Collectively, these findings on stress and attention reveal sex

differences in the basal forebrain attention system that emerge, at
least in part, from ovarian hormone regulation of cholinergic
neurons. When the system is pushed by chronic stress, sustained
attention is more disrupted in males than females, and high
circulating levels of ovarian hormones in females protect them
from the negative effect of CRF on attention. Clinically, men are
more likely than women to suffer from ADHD and schizophrenia,
and symptoms of these disorders are exacerbated by stress [16,
17, 34, 35]. Thus, sex differences in vulnerability of the basal
forebrain attention system to stress may contribute to the higher
rates of disorders with attention disruptions as a key feature in
men compared to women.

FUTURE RESEARCH DIRECTIONS
The studies reviewed here reveal that arousal and attention
systems are regulated by gonadal hormones and differentially
affected by stress in males and females. Clinically, these sex
differences could translate into differences in the efficacy of
current medications that target these systems. However, clinical
data on this topic is lacking because, although drug trials collect
data by sex, few studies compare results between the sexes [191,
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192]. Take, for example, the case of acetylcholinesterase inhibitors
(AChEI), which have been prescribed for Alzheimer’s disease for
decades, so knowledge of sex differences in drug effects would be
anticipated [191]. However, two recent reviews found that there is
almost a complete lack of sex-specific reporting on AChEI drug
trial data [191, 193]. In fact, none of the trials assessing AChEI
safety and tolerability in Alzheimer’s patients reported findings of
by sex [193]. Clearly, more efforts to compare drug trial effects by
sex are needed to decrease harmful side-effects and reduce
research value lost [194].
Preclinical data on stress regulation of arousal and attention

circuits also remain sparse, particularly when it comes to under-
standing mechanisms that alter arousal and attention in females.
This knowledge gap results from the exclusion of female subjects
in basic neuroscience research [195, 196]. The good news is that
the traditional approach of only studying males is changing due to
increased pressure from funding agencies, such as the National
Institutes of Health in the United States, to consider sex as a
biological variable in non-human animal studies [197]. From a
basic research standpoint, this more inclusive approach will
increase our knowledge of the female brain. An additional benefit
is that the application of this basic knowledge will improve health
outcomes, especially for women. Adverse drug reactions occur
more often in women than in men [198–200]. While there are
many potential reasons for this disparity, the omission of female
subjects from preclinical studies that drive drug discovery
certainly plays a role.
An important benefit of including both males and females in

basic research studies is that comparing the sexes can reveal novel
mechanisms that could be leveraged into new treatments. As an
example, CRF1 receptor antagonists have been pursued for years
as a potential therapy for PTSD and depression, given the clear
role of the CRF1 receptor activation in contributing to these
disorders [201, 202]. Unfortunately, these drugs have not met with
much success clinically, perhaps because these compounds were
developed in male animals but then tested for efficacy primarily in
female patients [123, 203, 204]. Thus, new approaches are needed.
By comparing the CRF1 receptors in males and females, a new idea
for treatment emerges [109, 205]. As noted, the CRF1 receptor
signals more through βarrestin-mediated pathways in males and
more through Gs-mediated pathways in females, and this Gs-
induced signaling heightens sensitivity of the LC arousal system in
females [48, 104]. Biased ligands that shift signaling from Gs-
mediated pathways to βarrestin-mediated pathways have been
developed for other receptors [206–208]. The data presented here
suggest that, if a ligand was developed for the CRF1 receptor that
could shift the conformation of the receptor to better bind
βarrestin in females, it could mitigate the hyperarousal symptoms
in PTSD and depression, particularly in women. Importantly, this
potential treatment strategy emerged only by comparing the
sexes to identify factors that promote resilience vs. vulnerability to
stress-induced arousal.
Most psychiatric disorders are sex-biased in their prevalence

and/or presentation and have stress as a contributing factor [31,
209, 210]. Thus, the study of sex differences in stress responses is
particularly relevant for neuropsychopharmacology. Although the
focus of this review is on arousal and attention, sex differences in
stress regulation of many domains (e.g., negative valence, social
processing, etc.) should be considered to better understand the
etiology of psychiatric disorders and improve their treatment.
More broadly, as the field of neuropsychopharmacology moves
towards developing personalized medicine, sex must be con-
sidered as factor. The influence of sex on the development and
treatment of psychiatric disorders, however, can only fully be
understood if both sexes are included and compared in the
experimental design of basic studies that serve as the basis for the
development of novel therapeutics.
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