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Twentieth-century genetics was hard put to explain the irregular behavior of

neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection;

they are highly heritable but associated with low reproductive success. Nevertheless,

they persist. The genetic origins of such conditions are confounded by the problem

of variable expression, that is, when a given genetic aberration can lead to any one

of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of

severity, from mild and subclinical cases to the overt and disabling. Such irregularities

reflect the problem of missing heritability; although hundreds of genes may be associated

with autism or schizophrenia, together they account for only a small proportion of

cases. Techniques for higher resolution, genomewide analysis have begun to illuminate

the irregular and unpredictable behavior of the human genome. Thus, the origins of

neuropsychiatric disorders in particular and complex disease in general have been

illuminated. The human genome is characterized by a high degree of structural and

behavioral variability: DNA content variation, epistasis, stochasticity in gene expression,

and epigenetic changes. These elements have grown more complex as evolution scaled

the phylogenetic tree. They are especially pertinent to brain development and function.

Genomic variability is a window on the origins of complex disease, neuropsychiatric

disorders, and neurodevelopmental disorders in particular. Genomic variability, as it

happens, is also the fuel of evolvability. The genomic events that presided over the

evolution of the primate and hominid lineages are over-represented in patients with

autism and schizophrenia, as well as intellectual disability and epilepsy. That the special

qualities of the human genome that drove evolution might, in some way, contribute to

neuropsychiatric disorders is a matter of no little interest.

Keywords: autism, schizophrenia, genomic variability, evolvability, missing heritability, copy number variation,

neural Darwinism

EVOLVABILITY AND THE PARADOX OF MENTAL ILLNESS

There remains a gaping hole in Darwinian psychiatry’s account of mental disorders: there are no good

explanations of why human brains seem to malfunction so often, and why these malfunctions are both

heritable and disastrous to survival and reproduction. That is, there is still no good answer for why such

susceptibility alleles have persisted despite thousands of generations of natural selection for adaptive

human behavior (1).

Nothing in biology makes sense except in the light of evolution (2) but, in light of evolution,
mental illness does not make sense. Consider autism and schizophrenia. They begin early in
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life and are disabling during the reproductive years. In the
language of natural selection, they compromise reproductive
fitness. They are associated with decreased fertility, yet
their prevalence is undiminished. The heritability of autism
and schizophrenia is high (3–6), yet both are characterized
by severe social impairment and are associated with low
reproductive success.

The persistence of such disorders from one generation to the
next is only one of several instances where mental illness is a
challenge to Darwinian principles. For example, the problem of
missing heritability (7). Autism and schizophrenia are thought to
be the consequence of multiple genes of small effect; yet genome-
wide association studies association studies have identified
hundreds of such genes, and together they account for only a
small proportion of cases (6, 8). The contribution of individual
genetic variants and their cumulative action to mental disorders
is disconcertingly small, usually <10% (9).

Another problem is variable expression, that is, the same
genetic variant with various phenotypic expressions. The
same genetic aberration may be associated with autism
or schizophrenia or intellectual disability or epilepsy, or
other neuropsychiatric disorders or combinations thereof (10).
Variable expression is illustrated by the fact that mental disorders
do not “breed true” but occur in different forms in family
members (11–13).

Even within defined diagnostic boundaries, patients differ
in virtually every salient characteristic, including symptoms,
intellectual and functional abilities, neurocognitive strengths
and weaknesses, neuropathological correlates, prognosis, and
response to treatment. This observation has led to the idea of
taxonomic “spectra,” e.g., the autism spectrum, the schizophrenia
spectrum, the spectrum of mood disorders, etc. Implicit to the
idea is that within every diagnostic category, mental disorders
show a continuum of severity, from mild and subclinical cases
to the overt and disabling. Most mental disorders occur in pure
form in small numbers of individuals and in partial or subclinical
forms in a great many more. One presumes a dosage effect, but a
dose of what? (14–17).

New developments in genomic medicine have begun to
illuminate the irregular behavior of complex diseases in general
and mental disorders in particular. They are particularly salient
to the neurodevelopmental disorders (NDD) and the focus here
is on autism, a prototypical NDD, and schizophrenia which is
increasingly recognized as such (18–21). NDD are conditions
that originate during gametogenesis/embryogenesis and affect
neural development (22). As a family, NDD are diverse in
their clinical characteristics and prone to high rates of co-
occurrence with other NDD. They are highly heritable but, in
most instances, studies have only discovered multiple genes that
are probabilistic in their association. Many if not most NDDs
arise from structural changes to DNA; e.g., aneuploidy (Down
syndrome), simple sequence repeats (Fragile X syndrome), and
copy number variants (intellectual disability, epilepsy, autism and
schizophrenia, and other mental disorders).

Structural variation, however, is only one chapter in an
evolving story. It is just one of many irregularities that
characterize the human genome, which we are learning to be

uniquely dynamic andmutable. Techniques for higher resolution
genomewide analysis highlight the irregular and unpredictable
behavior of the genome, endowed as it is with a high degree
of variability. It has served the hominid lineage for better and
worse. Genomic variability accounts for no small proportion of
the missing heritability of complex diseases (7, 23). It has also
presided over the runaway evolution of our lineage over the past
twomillion years, and especially the past hundred-thousand. The
complex and adaptable human brain reflects a genome that is
uniquely mutable and responsive to challenging environments.

The relevant principle is evolvability, a species trait that
describes the capacity to generate heritable variations (24). The
essence of evolvability is inter-generational and inter-individual
variability. Phenotypic variation drives natural selection, but
variation ultimately derives from the variability of individual
genotypes; evolvability describes a genome that can generate
a spectrum of phenotypes ranging from major evolutionary
innovations to small changes between generations (25, 26). A
dynamic, mutable genome is also unstable; it is responsive to life
events, especially early ones, and vulnerable to insults of various
kind throughout life (24, 27).

Perhaps mental disorders do not make sense in light of
traditional genetics, but they make good sense in terms of
evolvability. Variability is a highly evolved characteristic of the
human genome. It rendered the hominid lineage especially
evolvable, and humans uniquely adaptable. A dynamic genome
is evolvable because it can generate a wide range of phenotypic
variations in a comparatively short period of time. It is able
to change not only at random but also in response to local
exigencies. It has more tools in its kit than random point
mutations; if mutational events that directly affected protein-
coding sequences were the only available molecular mechanism
to generate new variants, adaptive evolution would be ponderous
and slow (25, 28). Primates would still be waiting in the trees for
successive mutations to occur. Point mutations are insufficient
for explaining the runaway evolution of the hominid brain. They
can’t explain why humans are so different from chimpanzees,
why selection might favor genes for post-reproductive longevity,
how signal human traits evolved as quickly as they have and how
the extraordinary diversity of the human condition can arise from
fewer than 25,000 protein-coding genes.

In the special case of hominid evolution, evolvability has
been both an independent and a dependent variable. It is
a general characteristic that promotes variation, but in our
lineage it has been trait under positive selection (29). To
support the trait of adaptability, hominids’ special traits were
agents of persistent and ongoing selective pressure. Social
cooperation, abstract intelligence, language, speech and tool-
making, and post-reproductive longevity rendered hominids
uniquely adaptable. At the same time, they also generated
selection pressures in favor of those very traits. Brain evolution,
therefore, made hominids adaptable and also positively selected
the trait of evolvability. The virtuous circle has been described as
runaway evolution (30).

That the special qualities of the human genome that drove our
evolution might, in some way, contribute to complex diseases,
NDDs and mental disorders is a matter of no little interest.
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Origin Stories
The problem of High Heritability and Low Reproductive Success
(HHLRS) is paradigmatic. It has been addressed many times
and from different perspectives, especially with respect to
schizophrenia, a condition that occurs with the same frequency
in all the nations and, as far as we know, always has. The
quality of our understanding has steadily progressed, beginning
with explanations that posited adaptation, thence to those that
emphasize adaptability; beginning with evolution as an origin
story and later concerned with evolvability as the consequence
of a mutable and dynamic genome.

“Adaptationist” theories suggest that a trait embedded in
the schizophrenic genome generates phenotypic variations that
are advantageous to individuals who do not express the full
phenotype. Perhaps the unique characteristics of psychotic
individuals were more valued in ancestral times. Psychotic
individuals may have been charismatic leaders or shamans (31).
Their lower threshold for threat perception may have been useful
in times when life was nasty and brutish (32)—Just because you’re
paranoid doesn’t mean they aren’t after you1. The relatives of
schizophrenic individuals may be more resistant to disease (33,
34). An idea still current is that mental disorders are associated
with creativity (35)—The romantic view is that illness exacerbates
consciousness. Once that illness was TB; now it is insanity2. It was
supported by a recent Swedish study that reported individuals
with bipolar disorder and the healthy siblings of people with
schizophrenia were overrepresented in the creative professions
(36) and an Icelandic study that found the same association based
on polygenic risk scores (37).

In a similar vein, the occurrence of autistic styles of thinking
in the first degree relatives of autistic individuals suggests
traits like hyper-systematizing, preference for visuo-spatial
relationships and detail-focused processing are adaptive, not only
for individuals, but as we learned from the accomplishments
of scientists and mathematicians with autistic traits, for the
distributed intelligence of society. If autism were a single-gene
disorder, it would suggest heterozygote advantage. If autism were
a polygenic disorder, a Gaussian model might be relevant, with
traits for autistic thinking normally distributed in the population,
at the tail end of the curve “hyper-systematizers” would cluster,
and beyond a certain threshold reside autism (38, 39).

Adaptationist theories propose that susceptibility alleles are
maintained by antagonistic pleiotropy or balancing selection.
In that case, probands and/or non-affected siblings would have
higher fitness than the general population. In fact, individuals
with autism and schizophrenia have lower fertility rates, and
their siblings’ are the same or lower than the general population
(1, 40–44).

Faustian Bargains
Many theories share the metaphor of a Faustian bargain; the
human brain is complex, and complex systems are “intrinsically
and irreducibly hazardous” (45). For example:

1Joseph Heller, Catch-22.
2Sontag S. Illness as metaphor and AIDS and its metaphors. Toronto: Doubleday;

1990, page 36.

• As specialized functions evolved, biological “trial and error”
produced individuals with advanced abilities and others with
abnormalities, including schizophrenia (46).

• In the course of evolution, positive selection for cerebral
flexibility allowed language to emerge, but the “by-product”
was variation in psychological functioning, personality
disorders and schizophrenia (47).

• The human brain, with its complex and recently evolved
circuitry for social cognition, matured over a long span of time,
a span that rendered it susceptible to genetic insults. “This
susceptibility was the trade-off for the advantages gained in
social cognition” (48).

• The same key genes that have been major contributors to
the rapid evolutionary expansion of the human brain
and its exceptional cognitive capacity also, in different
combinations, are significant contributors to autism and
schizophrenia (49, 50).

“By-products” and “trade-offs” refer to antagonistic pleiotropy,
when alleles increase the evolutionary fitness payoff of one
trait while simultaneously reducing it for another. Such theories
posit that a species’ predisposition to mental disorder has a
selection advantage, albeit indirect. However, interesting, they
lack empirical support.

More recently, theories of the HHLRS problem have
implicated genomic variability. A high mutation rate
characterizes primates in general and humans in particular;
multiple, independent de novo mutations in many different
vulnerable genes and genomic regions (25, 51–60). A theory
based on polygenetic mutation-selection balance is that complex
brain functions are the work of multiple genes; the genome
already harbors a large number of mutations, and new mutations
are occurring all the time. Every generation, therefore, carries
the burden of old and new mutations, some favorable and some
not. Because the distribution of mutations is assumed to be
continuous in the population, the expression of positive and
negative phenotypes is also continuous. The distribution of
negative traits reflects the continuous nature of most (if not all)
mental disorders. The “cliff-edge” model captures the non-linear
amplification of negative traits that leads to severe and disabling
mental illness (61).

Theories derived from a high mutation rate, unlike the
others mentioned above, do not propose evolutionary trade-
offs; i.e., the cost of complexity is met by the occurrence
of neurodevelopmental disorders. The theory of polygenetic
mutation-selection balance explains how fitness-reducing genetic
variation is maintained in the population; harmful mutations are
removed from the gene pool at a rate proportional to their effect
on fitness, but “novel mutations occur all the time” (1, 53, 62–
65). Thus, the occurrence of mental disorders is inevitable, fueled

by deleterious mutations, rare at individual loci but ubiquitous in

genomes (1, 66–68).
Addressing the HHLRS problem from the perspective of

evolvability is not quite so pessimistic. Novel mutations do, in

fact, occur all the time, including rare alleles with large effect,

genomic transformations like copy number variants, mutations
in non-coding regions of the genome and epigenetic changes in
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gene expression. They may persist for only a few generations but
are continually replenished by virtue of high mutation rates (69).
Mutations, however, are not necessarily random, but appear to
occur in the human genome in accord with principles that are
only now coming into focus. The complex, evolvable genome is
prone to devastating errors but they occur in particular, knowable
ways that open possibilities for anticipation and prevention.

Genomic Variability and the Problem of

Missing Heritability
Although single-nucleotide polymorphisms (SNPs) are the most
abundant form of DNA variation in the human genome (67),
new technologies have shown that individual variation is also
the consequence of structural variants involving larger segments
of DNA (8, 70–72). Two randomly selected human genomes
differ by 0.1% when only SNPs are measured, but when structural
variants are also measured, they differ by at least 1% (73, 74).

Structural variants may be rare, compared to 37 million or so
SNPs but their large size increases the potential to affect gene
expression (4, 75). Genes containing regulatory regions, exons
and introns occupy about 5% of the genome and protein-coding
exons only about 1% (76), while structural variants comprise no
<55% of DNA (77) and perhaps as much as two-thirds (78).
Thirty per cent of the human genome are microsatellites (79)
and about a third are copy number variants (80–82). Structural
variation is more common in humans than other mammals
and occurs several times more frequently in neurons than other
cells (54–58). Evidence from a wide range of common diseases
indicates that genetic heterogeneity is a key characteristic of
the human genome and that “most genetic control is due to
rare variants” (4). The challenges that genetic analysis poses to
mental disorders are well in accord with our new and developing
appreciation of genomic behavior. Genomic variability is not
only the fuel of evolvability but a window to understanding the
origins of complex disease, mental disorders and NDDs.

THE NATURE OF GENOMIC VARIABILITY

1. Structural Variation
The hominid genome is not a static blueprint but a source
of “gene nurseries” that play a role in gene innovation and
adaptability (83). It is something that happened during the
later course of evolution. Pre-primate evolution was probably
driven by point mutations or whole-genome duplications (59,
84, 85). Ascending the phylogenetic ladder, mutations by genetic
rearrangement have been progressively more important. Almost
all of the genetic differences between humans and other primates
are a result of duplications, deletions, inversions, insertions,
and transformations (86, 87). For example, about 35 million
nucleotide substitutions distinguish humans from chimpanzees.
About half are transposable element insertions (88).

The high-resolution molecular scanning tools developed
during this century have revealed a genome that is no less
than restless. For example, aneuploidy traditionally referred to
supernumerary copies of whole chromosomes (e.g., trisomy
21, Down syndrome). In recent years, novel aneuploidy
syndromes have been identified, and the definition has been

extended to include deletions, insertions and duplications of
subchromosomal regions (89). A new term that includes classical
aneuploidy and other structural variants is DNA content
variation (DCV). Such variants are dynamic, fluid and unstable,
both through germlines and in somatic events and they are
ubiquitous in the human genome (74).

Structural variation is most likely to occur in non-
coding regions of the DNA molecule. Non-coding regions
are comparatively unstable and generate mutations and
rearrangements at a high rate (90–92). They are especially
prone to genomic rearrangements. As it happens, the human
genome contains more non-coding DNA than any other
animal or plant. Among microorganisms, <25% of DNA is
non-coding. In plants and lower animals, about 60% is non-
coding; in primates, the proportion is higher. In humans, it is
98.5% (93).

The human genome is particularly enriched in both number
and length of retrotransposons (94). The propagation of Alu
elements is coincidental with the fast evolution of segmental
duplications in the primate genome, which grew as a result of a
major burst in Alu activity 25–55 MYA; ours have continued to
expand (56, 59). Compared to chimpanzees, humans have nearly
three times as many Alu elements (88).

Copy number variants (CNVs) are duplications or deletions
that are >1,000 base pairs in length. At least half of the CNVs
thus far detected include protein-coding regions and affect the
behavior of the relevant genes. The functional impact of CNVs
extends across the full range of biology, from gene expression
to cellular phenotypes (70, 95) and to all classes of human
disease with an underlying genetic basis, whether inherited
or sporadic (74, 96). They are especially relevant to autism
and schizophrenia.

Aneuploidy Is Common in Brain
The human brain is a genetic mosaic. In the adult cerebral
cortex aneuploidy, broadly defined, is estimated to occur in no
fewer than 30–50% of neurons, many times more frequently
than in somatic cells (97). Fetal neurons develop over a
longer span of time than those of most other animals, and
undergo more cell-divisions along the way. A prolonged span of
mitotic activity, one presumes, makes such rearrangements more
likely (98).

How the brain accommodates events that are potentially
deleterious is a mystery. In spite of cellular variability and
diversity and the consequent differences in gene expression, the
functionality of the CNS is usually not compromised (99, 100).
Aneuploid cells are capable of surviving the massive cell death
that accompanies neurogenesis (101). They can differentiate
into neuronal lineages and are integrated into active neural
circuitry with the potential to influence normal brain functions
(102, 103). DCV shows regional variation within the human
brain, more in the frontal cortex and less in the cerebellum.
Neuronal DCV concentration also differs among individuals
(104). Genetically mosaic neural circuitries are part of the normal
brain organization (105, 106) and reflect the structural and
functional mosaicism of brain itself, its neuronal diversity and
expansive range of behavior (97).
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The prevalence of neuronal aneuploidy captures two
principles that we shall rely on. One is that brain is an
evolutionary system. From this perspective, maintenance of
neutral or beneficial aneuploidies is the end-result of selective
pressures (107). Extreme forms of aneuploidy are eliminated
during fetal development by programmed cell death, while other
neurons survive and contribute to neural organization. One
assumes that the loss or gain of genetic material may render
some cells more “fit” than others, perhaps by increasing stress
resistance or enhancing functional capacity (97).

The second principle is that high mutation rates confer
adaptability. Genomic diversity prepares developing brain for the
multitude of tasks before it. A more diverse neuronal population
is better-equipped to adapt to challenging environments; a
lineage thus endowed is under positive selection for genomic
variability and evolvability.

Although mature neurons are terminally differentiated cells,
they remain capable of generating structural variants. When they
are stressed, neurons seem to be able to reactivate elements of
the replication mechanism (103). Such “cell-cycle events” may be
pathological (108); they have been observed in several human
neurodegenerative diseases, including Alzheimer’s disease and
ataxia telangiectasia. Alternatively, they may be an attempt at
neuronal self-protection. The ectopic expression of cell cycle
markers may be “a desperate attempt of a neuron under stress to
protect itself ” (109). It is not a paradox but another principle of
evolvability: mechanisms to increase robustness are also, in some
circumstances, fragile, and vulnerable to pathology.

That genetic plasticity of post-mitotic neurons is mostly
adaptive is captured by the frequency with which mobile
elements can change their position within the genome,
either by a DNA-based (transposition) or an RNA-based
(retrotransposition) mechanism. The latter is of particular
interest because it is a form of plasticity that responds to early
life experiences (110, 111).

Structural Variation in Autism and Schizophrenia
DCV contributes to phenotypic diversity, adaptability and
individual differences in brain organization. It also plays a role
in disease, albeit one that is quite variable (89, 97). A number of
recent studies have provided compelling evidence that autistic,
schizophrenic, and bipolar patients are more likely to possess
CNVs in their genome, especially deletions of genomic regions
(112, 113); no one CNV in particular, however, but rather any of
a number of rare CNVs (11, 72, 114–120).

Compared to healthy controls, individuals with schizophrenia
are three times more likely to harbor rare structural mutations.
The risk is even higher in subjects with early onset schizophrenia.
Each rare mutation disrupts a different gene or genes and the
disrupted genes are disproportionally involved with signaling
and neurodevelopment (4, 113). The burden of CNVs in
schizophrenic patients ranges is low, from 2.4 to 10% (121,
122). However, CNV analyses with better genome coverage will
probably discover many more relevant associations (123). When
microdeletions and microduplications >100 kb were identified
by microarray comparative genomic hybridization and validated

by high-resolution platforms, novel deletions and duplications
were found in 15% of individuals with schizophrenia and 20%
of young-onset cases (vs. 5% in controls) (124).

The prevalence of structural variants in autistic patients, on
the basis of less sensitive genomic scans, is usually given as
5–10% but may be as high as 28% (112, 114, 120, 122, 125).
Although the vast majority of CNVs are inherited, CNVs that
occur as de novo mutations are more commonly associated with
autism (and schizophrenia).De novoCNVs are foundwith higher
frequency among sporadic cases, whereas inherited CNVs are
more common in familial cases (121, 126–129). With better
technology, the prevalence of structural variants will likely be
higher (95, 128, 130, 131).

It probably will be but what will it mean? Structural variants,
interesting as they are, may simply join the long list of “multiple
genes of small effect” and the even longer list of epigenetic and
non-genetic factors associated with autism and schizophrenia,
with no one making more than a small contribution (132). Many
CNVs are functionally neutral; healthy individuals carry, on
average, about 11 CNVs (57). Even the CNVs that are known
to be associated with a neuropsychiatric disorder are present in
low concentrations in healthy controls (49, 128, 133–138). CNVs
are not, as a rule, highly penetrant (139–142). Further, when
CNVs are expressed, the phenotypes are variable: schizophrenia
or autism, but more often developmental disabilities, congenital
malformations, or other mental disorders (11, 125, 140).

Genomic Variability: 2. Variable Expression
Reduced penetrance refers to individuals with a specific genotype,
but the clinical phenotype is not expressed or is expressed in a
lesser form. Variable expression is the degree of variation in a
clinical phenotype in individuals who carry a specific genotype
(143). CNVs manifest both.

CNVs known to be associated with autism or schizophrenia
are also found to occur in association with other psychiatric
or neurodevelopmental conditions. A good example is the
22q11.2 deletion. The deletion occurs in only about 1% of
schizophrenic patients, yet it is the strongest DNA-based
risk factor for schizophrenia identified so far. Individuals
with the 22q11.2 deletion have a 20-fold increase in risk for
schizophrenia. Nevertheless, individuals with the deletion may
be perfectly normal; or they may have developmental delay,
congenital malformations (144, 145), generalized epilepsy
(146, 147), intellectual disability (148), learning disability,
autism, ADHD, anxiety, depression, OCD, or bipolar disorder
(11, 97, 113, 118, 149–155). Variable expression is certainly
the case for many other deletions and duplications [e.g.,
1q21, 15q13.3, and 16p11.2; (113)]. Even when a structural
variant and the alleles therein are well-defined, or when a
repeat number is correctly counted, the clinical consequences
are unpredictable. In a kindred harboring a translocation
disrupting DISC1, carriers had schizophrenia, bipolar
disorder, major depressive disorder, cognitive impairment
or no mental disorders at all (116, 125). It is perplexing but
typical not only of complex diseases but complex traits in
general (115).
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Genomic Variability: 3. Epistasis
Most phenotypes result from intricate gene interactions.
These interactions, recognized as deviations from additive
genetic effects on the phenotype, and collectively called
epistasis (156). It is a universal characteristic of complex
genetic traits. It is one more aspect of genomic behavior
that accounts for the phenotypic variations that occur with
mutations in the same gene (157). A mutation may be
benign or beneficial to one individual but deleterious to
another individual; it is contingent on an individual’s “genetic
background” (158). “Sign epistasis” means that a mutation is
beneficial on some genetic backgrounds but deleterious on
others (159).

“Epistasis” was coined to describe the suppression of an
allelic phenotype by an allele at another locus (160). It is more
complicated than gene B influencing the expression of gene A;
“higher order” epistasis involves interactions among multiple
mutations (161, 162). Antagonistic epistasis among deleterious
mutations and synergistic epistasis among beneficial mutations
represent positive epistasis, whereas the opposite situations
represent negative epistasis. Intra-gene epistasis results from
effects of mutations on RNA stability and enzyme activity and
inter-gene epistasis may result from protein interactions and the
structure of metabolic networks (156, 163).

To say that a disorder is the consequence of “multiple genes
of small effect” understates the magnitude of the problem. The
results of multiple genes acting together may be additive or
multiplicative, linear or non-linear. Epistasis is also affected
by events in the environment of the cell (164, 165) and the
developmental stage at which they occur (166). Within a gene,
different alleles can interact epistatically with different gene
sets (167).

Divergent phenotypes emanating from identical genetic
variation(s) are consequences not only of epistasis but also
(in varying degrees and combinations) pleiotropy and locus
heterogeneity, environmental factors, epigenetic mechanisms,
stochastic events, dose and timing of gene expression, and
RNA regulatory elements (4, 118, 138, 168–172). Some variants
may only affect risk if they co-occur with other genetic or
environmental risk factors (115).

The Darwinian “problems” we cited earlier were the
heterogeneity of disorders even within well-defined categories,
their occurrence in pure form in small numbers of individuals
and in partial or subclinical forms in a great many more, the fact
that most such conditions do not “breed true” but are present in
different forms in family members, comorbidity, and the HHLRS
problem (11–17). The question is not why they happen but,
knowing what we now know, how could they happen in any
other way.

Genomic Variability: 4. Gene Regulation
The main effects of DNA structural variants are commonly
attributed to changes in gene expression and its regulation. The
latter, however, represent an entirely different dimension
of genomic variability. Gene expression is the work of
multiple genes and other DNA segments, proteins, and

RNAs of varied stripe, as well as epigenetic changes to
DNA and chromatin. Together, they comprise the genome’s
control architecture and participate in countless gene
regulatory networks (GRNs). Networks of regulatory
genes occupy more DNA than protein-coding genes
do (173, 174).

Variation in gene expression levels is abundant within and
among populations; quantitative differences in gene expression
are responsible for a significant amount of the variation
represented by individual differences (89, 175). Gene regulation
is itself a heritable trait. When variation in gene expression
phenotypes is compared among unrelated individuals, among
siblings within families and between monozygotic twins, there
is a strong genetic contribution to variation in the level of gene
expression (176, 177).

Gene expression microarrays and transcriptome sequencing
have revealed remarkable natural variation in gene expression
levels within populations as well as between species (178).
Regulatory variation within and between species is thought to
explain a large proportion of phenotypic diversity of life. It is
believed that most complex traits originate in non-coding regions
that affect gene regulation (179).

• GRNs are the basis of organization and stability. They are
models of dynamic complexity with modular structures that were
present at the base of the metazoan tree (93). Their stability is a
function of modularity, feedback loops and the redundancy of
the genetic material upon which they operate. They are able to
withstand gene disruptions due to mutation or environmental
stress (93, 180).

• GRNs are organized hierarchically. GRNs are organized
hierarchically and control the nature of available variation by
“packaging” genetic modules for selection (181). Thus, they are
agents not only of stability but also evolvability.

• GRNs also reflect the fact that the organism is a complex
adaptive system. In GRNs, information from the cell state and
the outside environment is translated into the correctly timed
expression of the appropriate gene products (182). GRNs have
been called the “nexus of physiological adaptation” (183).

• GRNs are a source of endless variation. For most genes,
transcript structure and expression level are not only highly
variable but functionally independent (175).

Genomic Variability: 5. Epigenetics
Epigenetic changes participate in GRNs by influencing whether
a gene is expressed, when it is and to what degree. Histone (or
chromatin) modification changes the structure of a core octamer
that contains two copies of the histones H2A, H2B, H3, and H4
(humans have them and chimpanzees don’t). Histone remodeling
ensures that DNA remains accessible to the transcriptional
machinery (184–187).

DNA methylation is another epigenetic mechanism that
can affect gene expression by making cytosine binding sites
more or less accessible to transcription factors; or it may
attract proteins that are themselves gene repressors. Variable
DNA methylation is the loss or gain of methylation at CpG
dinucleotides. Variable DNA methylation is the loss or gain of
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CpG dinucleotides; levels of methylation vary among individuals
and change at different stages of life. Patterns of methylation or
hypomethylation at different sites appear to be associated with
longevity or, alternatively, aging-related diseases like cancer and
Alzheimer’s (188–191).

Non-coding RNAs (ncRNA) are a third epigenetic
mechanism. ncRNAs are generated by intergenic or antisense
transcription, usually at introns, and comprise more than 90%
of transcriptional output from the genome. ncRNAs remain
tethered to their transcription site, serving as allelic markers
and lending spatial and temporal specificity to gene expression
(173, 192). An example of temporal specificity are the 35 ncRNAs
that govern the development of dopaminergic neurons from
neural stem cells. They are differentially expressed between
progenitor and mature states and, in all probability at different
stages of the life cycle (193).

Although epigenetic mechanisms are most active during
embryogenesis and early life, they remain active throughout
life, meaning that life experiences can make enduring changes
in the genome. Further, epigenetic changes can be passed on.
Phenotypic variations unrelated to variations in DNA base
sequences may be transmitted to subsequent generations of
cells or organisms; an epigenetic trait is “a stably heritable
phenotype” (194–196). Epigenetic inheritance is not quite the
same as the Lamarckian theory of inheritance of acquired
characteristics, but it’s not all that different. It allows genetic
variants that do not change the mean phenotype change the
variability of phenotype. However, epigenetic modifications can
also affect the probability that a region of the genome will
mutate [e.g., single-base and transposon-mediated mutations
and translocation; (197)]. Therefore, not only may epigenetic
modification promote heritable phenotypic variation, but can
also facilitate genetic evolution by modulating mutation rates
across the genome (198, 199). Epigenetic variation, therefore,
is a powerful mechanism for evolutionary adaptation to
changing environments.

Epigenetic participation in GRNs is illustrated by the
remarkable diversity of genetically identical cells and organisms
even when they have identical environmental exposures.
Cloned animals, for example, may have different phenotypes
at birth. In monozygotic human twins, gene expression is
four times more dissimilar in older subjects (50-year-old
monozygotic twins) in comparison to younger subjects (3-
year-old monozygotic twins). Autism and schizophrenia
both show surprisingly high frequencies of phenotypic
discordance in monozygotic twins. In one study, genomic
DNA extracted from leukocytes of male MZ twins discordant
for schizophrenia was found to have significant differences
between the twins at sites that are closely associated with CpG
islands and gene expression (200, 201). Similar differences in
methylation patterns have been noted in MZ twins discordant
for autism (202).

Epigenetics reflects three principles long familiar
to psychiatrists:

1. Experience influences development and the effects may
be long-lasting.

2. The maternal contribution to development is important on
many levels, including the transmission of gene expression
patterns by epigenetic programing in utero and early life.

3. Epigenetic programming is particularly robust in early life but
epigenetic re-programming, modified by experience, occurs
throughout the lifespan.

Genomic Variability: 6. Stochasticity, Noise
Another principle that psychiatrists encounter, perhaps more
often than they like, is captured by the stochastic behavior
of gene regulatory networks. The generation of gene products
is necessarily sensitive to unpredictable fluctuations. Gene
regulation is intrinsically “noisy” (203).

Transcription factors are proteins expressed by genes which,
in turn, control the expression of genes. Their dynamics are
constrained by a highly structured, densely tangled intracellular
environment where DNA, RNA, and proteins may be present
and active with only a few copies per cell (181). Since typically
30–100 regulatory proteins per gene are used as transcription
factors (204), a corresponding number of genes must go through
their individual cycles of expression in a perfectly synchronized
manner; otherwise, a shortage of a few transcription factors may
lead to drop-out from the regulatory process and a halting of big
sections of transcription machinery (205). When a transcription
factor initiates gene expression, its effects are amplified by
cycles of epigenetic reprogramming; normal cell activity involves
thousands of transcription factors operating in parallel with
epigenetic mechanisms. Thus, there are ample opportunities for
“noise” or stochasticity—to arise. A small number of epigenetic
changes, or a single one, may have a net effect on multiple
downstream targets. Environmental signals can affect the activity
of transcription factors and epigenetic complexes to regulate gene
expression (93, 192).

The modular structure of GRNs is a stabilizing factor but
there is no overlying regulatory system, in the sense that
“regulation” is used in systems control theory (181). If anything,
GRNs are self-organized, responding to differences in the
internal states of cells; to the effects of subtle environmental
differences, such as morphogen gradients during development;
to predictable processes such as cell cycle progression; to random
processes such as partitioning of mitochondria during cell
division; and to ongoing genetic mutations (206). They also
manifest the inherent stochasticity of biochemical processes that
are dependent on infrequent molecular events involving small
numbers of molecules. Like people, they encounter innumerable
opportunities to do something unpredictable.

Intellectual disability, autism and schizophrenia have
been related to GRN’s that regulate neurogenesis, neuronal
connectivity, cell signaling, axon guidance, presynaptic pathways,
post-synaptic protein complexes, cytoskeleton dynamics,
intracellular signal transduction pathways, transcription
regulation, and epigenetic modulation of the chromatin structure
(207–211). Clinical studies of gene networks, however, are
theoretical, relying on statistical associations among genes that
are expressed in particular areas or that have known functions.
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Mapping the “interactome” directly has only been done in model
organisms such as yeast, fruit flies, and roundworms.

The Origins of Genomic Variability
It may be reassuring to clinicians to learn that the genetics of
complex disease are no less complex than the phenotypes they
generate but may wonder how it came to be that way. Genomic
variability, in all its dimensions, has increased as evolution scaled
the phylogenetic tree; a highmutation rate characterizes primates
in general and humans in particular. It is telling that, of all
the great apes, humans have less genetic diversity defined by
the number of SNPs, but much more in terms of structural
variants (212).

DNA content variation is more common in humans than
other mammals; because it occurs several times more frequently
in neurons than other cells we may assume it favors the evolution
of a complex and adaptable brain (25, 54–60). Most of the
structural rearrangements in the mammalian lineage are believed
to have occurred in brain-specific genes (55). The duplication rate
accelerated at the time of the common hominoid ancestor (57)
and our own species is remarkable for numerous large segmental
duplications (25, 60).

Structural rearrangements allow multiple forms of a gene to
co-evolve and to rapidly reorganize the genome. Variation in the
amounts and types of repetitive DNA varies between organisms
and reflects how rapidly a species is capable of evolving in
response to changes in its environment (213). It is believed to
foster inter-individual genetic variability and variation from one
generation to the next (168, 214, 215). The creation of novel
genes by genomic transformation is said to have been “the major
driving force in hominid evolution” (91) and “the sine qua non
for evolvability” (24).

Changes in the gene regulatorymachinery are another creative
force in morphological evolution (55, 216). The proliferation of
new regulatory genes coincided with the emergence of increasing
organismal complexity, and they enabled organisms to develop
new functionalities. Differences in gene expression are probably
the real divisor between humans and chimpanzees; our genes are
largely the same but the difference is accelerated gene expression
changes in the human brain (58). During hominid evolution,
mechanisms of gene expression have been elaborated to an
extraordinary degree and this is especially true of genes that
govern brain development (28, 58, 217, 218). The adaptability
of the genome is further enhanced by epigenetic mechanisms
and, as it happens, humans are the most epigenetically complex
species (219, 220).

The convergence of genomic variability, morphologic
evolution and the evolution of a complex, highly adaptable
brain is contained within the concept of evolvability. Animals
possess two systems with which to address the challenges of
their environment: a neural system, that directs behavior and
a genomic system that provides the wherewithal for behavior
to occur. Both systems are composed of networks that are at
once inordinately complex and also flexible. Their complexity
and flexibility increase as one ascends the phylogenetic ladder.
We humans are the carriers of genomic and neural systems that
make us uniquely adaptable and, one may say, evolvable.

We also know that genomic events that conferred evolvability
to the primate/hominid lineage are over-represented in patients
with autism and schizophrenia, as well as intellectual disability
and epilepsy. The irregular behavior of the genome is probably
reflected in the evolution and organization of neural connectivity;
it is certainly reflected in the irregular behavior of complex
diseases in general, autism and schizophrenia in particular. The
pictures are gradually coming into focus: the mechanisms of
genomic variation, the vicissitudes of gene expression and their
variable phenotypic consequences. As the particulars accrue, so
do underlying principles. Genomic variability is clearly related
to evolvability and to NDDs, but are the latter two connected?
The question has been answered: “The same genes that were
responsible for the evolution of the human brain are also a
significant cause of autism and schizophrenia” (50). There are
hazards, however, to facile answers. The issue isn’t “genes” at all
but the principles that govern their behavior. Three principles
relevant to evolvability are reiterated in a clinical arena where the
idea of evolvability is current, in studies of cancer.

Evolvability in Real Life
Cancer as an evolutionary system is neither metaphor nor theory
but an observation that has implications for diagnosis and
treatment (221). Cancers are dynamic entities that never cease
to evolve. They don’t only grow; they “evolve according to well-
understood principles of somatic selection, along trajectories that
can be described by established methods for tracing phylogenies”
(222). Individual cancer cells are reproductive units within a
population and compete not only with non-neoplastic cells but
also with other cancer cells that possess different genotypes.
Neoplastic cells, especially solid cancers, generate additional
mutations with new phenotypes, such as the ability to invade
adjacent tissues, recruit blood supply, overcome nutritional
deficiencies and resist immune attack (223). Their mutational
patterns evolve stochastically and are highly diverse. Cancers
contain, on average, 50 non-silent mutations in the coding
regions of different genes; only a small fraction of the mutations
are common to all tumors in a given class (224–226).

In cancers, genetic heterogeneity is “the fuel that drives
selection” (223, 227). Cancer cells are notorious for their
genomic instability. They show genomic rearrangements at the
microscopic and submicroscopic level; mutations in coding
regions, genomic loss or amplification, transpositions and
transformations, aberrant methylation and expression profiles.
Such mutations render cancer cells evolvable and, all too often,
difficult to treat3 (228, 229).

The evolvability of cancer cells captures three relevant
principles. The first is that high mutation rates confer adaptability.
Cancer cells are subject to stresses—hypoxia, nutrient depletion,
immune surveillance, chemotherapy, —and they show that high
mutation rates occur when cells are stressed.Mutations accelerate
adaptation and cells with the requisite phenotypes are selected
(230–232). This observation has wider import; it belies the

3Mutant clones are often the source of treatment resistance. Mutant clones that are

resistant to chemotherapy may persist in a dormant state, only to erupt at a later

time.

Frontiers in Psychiatry | www.frontiersin.org 8 January 2021 | Volume 11 | Article 593233

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Gualtieri Genomic Variation and Evolvability

assumption that mutagenesis is random, constant, and gradual.
Mutations occur more frequently when cells are maladapted to
their environments, and the mechanisms that drive mutation
tend to target specific genomic structures (233).

The second principle is that the genome is balanced between
two evolutionary traits, stability, and variability. Stability, or
robustness, is the ability to remain adapted to existing conditions
in spite of perturbations. Cells that are genetically unstable—for
example, those with certain CNVs—are predisposed to neoplastic
transformation (229, 234). Cancer cells are unusually robust
because high mutation rates render them more variable, more
likely to advance in the face of hostile environments (235).

The third is that the human genome has achieved a good
balance. The hominid lineage has evolved successfully while
maintaining an array of DNA monitoring and repair enzymes
that render most mutations an evolutionary dead-end. That
is why cancers, like severe, disabling mental disorders, are
comparatively rare events. Our genome derives disproportionally
from individuals who had effective mechanisms for suppressing
the conditions (223, 236). Nevertheless, mutations occur and
continue to exercise effects, not always good ones. The balance
is not perfect. Cancers, like mental disorders, continue to
occur. Mechanisms for mutation prevention and suppression
are imperfect. The accumulation of new genetic variants may
fuel evolution of the species but not all variants are beneficial
to individuals.

Neural Darwinism
Neoplastic cells compete not only with their host but with each
other. The evolutionary expansion of neoplastic cells is a far
cry from what happens among post-mitotic neurons in autism
and schizophrenia, but the point is that evolution is more than
an historical event; it is the product of biological processes and
principles that remain active. So, if brain were regarded as an
evolutionary system, the evolvable units would not be neurons
but the connections that form among them—at a fundamental
level, synapses and at the next, neural networks. If autism and
schizophrenia are, in fact, disruptions of neural circuitry (237,
238), they may be conceptualized as aberrations in one or more
evolutionary processes.

The development and maturation of brain is characterized
by, among other things, the evolution of discrete interconnected
groups of active neurons–-“cell assemblies” or neural networks
(239). “Synaptic Darwinism” refers to synapses “replicating” by
strengthening their connections and “mutating” by connecting
new cells. “Neural Darwinism” is more than a metaphor. During
the course of development and throughout life, there is always
a vast array of potential connections to be made, but only
the fittest survive (240). The axonal arbors of neurons tend to
be in close proximity; competition results in strengthening the
connection with one neuron and withdrawal of the rest. Onle
certain connection patterns are selected in order to form optimal
configurations (241); alternatively, one may say that neurons
compete to form effective connections (242) “What could be
analogous in the case of synapses to genetic mutations? We
believe the obvious analog to genetic mutation is structural
synaptic change” (243).

“Competition” among neurons is reflected at the level of
molecules; in living cells different molecular species compete
for binding to the same molecular target. A relevant example
is the competition of genes for the transcription machinery or
the competition of mRNAs for the ribosome. In transcription
and translation networks, competition takes place within large-
scale networks that typically have hundreds to thousands
of competitors, all at a relatively low concentration. Many
different genes compete for RNA polymerase and transcription
factors, microRNAs compete for mRNA and thousands of
different transcripts compete for a common set of ribosomes
and translation factors. Translated proteins compete for a
common folding and transport machinery and when they
are to be removed they compete for a common degradation
machinery (244–246).

Competition among alternative pathways occurs in the
behavior of neural networks and the mechanisms of cognitive
control (247, 248). In the lateral amygdala, neurons with
increased excitability during training outcompete their neighbors
for allocation to an engram (249). Representation in the visual
system is competitive; both top-down and bottom-up bias
influences the ongoing competition (250). Awareness itself is a
bottleneck through which only a small amount of neural activity
is successful in coming to one’s attention (251, 252).

The evolvable human genome gives rise to neural systems
that are themselves evolvable. The principle that mutations
confer adaptability is equally pertinent to the genome and the
neural connectome; variability in the former is a homolog of
plasticity in the latter. So also does the principle of balance.
The neural connectome depends on the expression of many
genes involved in neural activity, including the behavior of
receptors, membrane transporters, enzymes for neurotransmitter
synthesis or degradation, cytoskeletal and vesicular proteins,
signaling and effector proteins, and regulators of transcription
and translation (253). The variable expression of so many genes
lends bias to the development of neural connectivity. Autism and
schizophrenia originate in networks of DNA, nucleotides and
proteins that preside over neurogenesis and neural migration,
synaptogenesis, and arborization. One can say that autism and
schizophrenia are “disruptions of neural circuitry,” or one might
better say that certain genes lend bias to the evolution neural
circuity. “Disruption” conveys either/or; “bias” is consistent with
the clinical heterogeneity of those disorders. The competition
at every level to form optimal connectivity is biased against a
perfect balance.

Robustness Is the Balance Between

Stability and Variability
Complex adaptive systems, such as the genome and the neural
connectome, are networks comprised of a hierarchy of networks.
Coherent behavior in such systems arises from the interplay
among many individual agents (254, 255). Networks and the
agents within them are subject to events in the environment
and to inevitable stochastic variations, and to all are available
alternative, competitive pathways. A system is robust if it
optimizes the balance between cooperation and competition,
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stability and variability, randomness, and regularity; thus, a
species is robust if it can maintain essential functions yet
maintains the potential to evolve (256, 257). The optimal balance
is a robust system that is stable but also flexible and adaptable.
Thus, the genome responds to stresses with adaptive mutations
and the neural connectome responds with adaptive plasticity.
How well cells, organisms, and species achieve that balance
in the face of innumerable unforeseen events is the essence
of evolvability.

The capacity of systems to maintain essential functions
when exposed to challenges is called phenotypic robustness.
Robustness is central to evolvability, because it allows an evolving
population to explore new genotypes without detrimentally
affecting essential phenotypes. Related terms are developmental
stability, the ability to produce a robust phenotype when faced
with challenges during development; and canalization, when
genetic systems under long-term stabilizing selection evolve to a
state of increased stability (157, 258–260). To that end, organisms
have evolved systems to buffer the impact of mutations, noise and
untoward environmental events.

The trait of robustness is pervasive in biology at every
organizational level including protein folding, gene expression,
and the neural connectome, as well as in physiological
homeostasis, development, organism survival, species
persistence, and ecological resilience (256, 261–265). In
successful organisms, however, the trait of robustness exists
in balance with trait evolvability. It seems a paradox; a robust
system is resistant to generating new phenotypes while an
evolvable system takes advantage of mutations to generate
phenotypic variations (266). However, a robust system is only
static with respect to essential morphological characteristics, that
are said to be “deeply canalized.” If perturbations always led back
to the native state, organisms would find it difficult to contend
to unfamiliar challenges (262). A better evolutionary strategy is
to protect essential native functions in the face of unexpected
tumult while evolving new ones to adjust to challenges. This
kind of robustness is not a barrier to evolution, but enhances
it. It enables genotypic variability and new phenotypes without
untoward functional consequences (24, 256, 267).

Robust but Fragile
The mechanisms that successful organisms employ to ensure
robustness are sufficiently flexible to support change when
circumstances demand. Yet the balance between robustness
and evolvability is tenuous and contains the germs of fragility.
Robustness supports evolvability but the genome and the neural
connectome are vulnerable to devastating disturbances. It is
the balance between robustness and evolvability that may be
relevant to complex diseases and mental disorders. The balance
is maintained by two kinds of buffering systems, one structural,
the other dynamic.

Modularity, for example, is a way most complex systems
are structured. Modularity promotes stability by containing
perturbations, reducing the interdependence of events and
minimizing system-wide impact. Modules optimize network
function because they are energy-efficient (268). They also confer
evolvability by reducing constraints on change (269). Modular
systems, however, are vulnerable to unexpected perturbations.

This “robust yet fragile” trade-off is fundamental to complex
dynamic systems (262, 270). Other mechanisms that are at once
stabilizing and supportive of evolvability, such as redundancy,
gene duplication, feedback control, and bow-tie architecture, are
also vulnerable to catastrophic failure in the face of unusual
stressors (267, 269). Gene duplication, for example, is a way
to lower the intrinsic noise in gene expression. Increased copy
number provides stability by preserving the native function of the
gene when copies happen to mutate (206). We have already met
some of the catastrophic failures that cometimes accompany copy
number variation.

When new genes arise, systems exist to suppress their
expression. Novel genes are not necessarily eliminated but
survive from one generation to the next. The result is a vast pool
for potential change, known as cryptic genetic variation (CGV).
It is invisible under normal conditions but when circumstances
change it is fuel for evolution (271). The hidden genes are a
massive cache of adaptive potential. On the other hand, they are
also a reservoir of potentially deleterious alleles (272).

When a robust system is stressed beyond its level of
tolerance, phenotypic expression may be decanalized, which
leads to increased phenotypic variability (273). A population
moving beyond its adaptive niche challenges its genome to
respond by increasing trait variability; decanalization is thus
an agent of evolvability. At an individual level, crossing the
threshold of stability opens the opportunity for cryptic alleles to
express themselves, sometimes in untoward ways. Decanalization
has been proposed to explain missing heritability in complex
disease (273–275).

In diverse model organisms, the threshold of robustness
differs among individuals; those with decreased robustness show
increased penetrance of mutations and express previously cryptic
genetic variation. It is not unlikely that phenotypic robustness
also differs among humans. Individuals with lower robustness
are thus more responsive to genetic and environmental
perturbations and more susceptible to disease (157, 275). This is
particularly relevant to disorders like autism and schizophrenia,
where environmental events such as intrauterine exposure or
obstetrical suboptimality may evoke a latent genetic proclivity.

Brainmay be particularly vulnerable to decanalization because
its development and activity are instructed by more than half of
the genome, each allele with a different level of robustness. The
hominid neocortex has expanded considerably, compared with
closely related species; perhaps there hasn’t been sufficient time
to evolve robust cortical developmental trajectories. Brain has
tightly-regulated critical windows of development; thus, there are
few opportunities to compensate for perturbations (274).

Versatile Proteins
Heat-shock proteins (HSP) are examples of a second type of
buffering mechanism, dynamic and dependent on the expression
of versatile proteins. HSP are protective against a wide range of
environmental stresses, notably those known to be prenatal risk
factors for neurological and psychiatric disorders, such as viral
infection, hypoxia, inflammation, irradiation, alcohol, maternal
seizure, and methylmercury (276–279). They are also genetic
buffers, residing at the boundary between evolutionary stasis and
change (264, 280).
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HSP are molecular chaperones that play an essential role by
protecting their “client” proteins from misfolding, for example,
in the face of heat stress (281, 282). Like many genes and
proteins, they are so-named after their earliest reported role;
HSP are induced by high temperatures. They are an essential
element of the biological stress response (281, 283). All species,
from prokaryotes on up, have HSP genes; HSP expression is
correlated with resistance to stress; and species’ thresholds for
HSP expression are correlated with the levels of stress that
they naturally undergo (284). One HSP, hsp90, is necessary
for the glucocorticoid receptor to develop (285) and regulates
receptor activity (286). It participates in hormone signaling (280,
287) and restores hypothalamic–pituitary–adrenal homeostasis
after stressful events (288). The aging-related decline in stress
tolerance is associated with a lower capacity to generate stress
proteins in general and HSP in particular (289, 290).

Genetic mutations are an important source of abnormal and
misfolded proteins, and HSP buffer their effects as well (291).
When an abnormal protein is expressed by a mutant gene,
chaperones such as hsp90 participate in its degradation. Thus,
HSP can buffer (i.e., suppress) phenotypic variation (283, 292–
295). When genetic variations are “decoupled” from phenotypic
expression, however, cryptic mutations accumulate (262, 293,
294, 296, 297). In light of this action, demonstrated in studies
of fruit flies, zebrafish, bacteria, yeast, fungi and plants, hsp90 is
called a “genetic capacitor” (282, 292, 294, 298, 299). It buffers
against mutations and thus contribute to the robustness of the
phenotype. When buffering operates normally, it prevents the
development of abnormal phenotypes; if the potential phenotype
were autism or schizophrenia, an effective buffering system
might prevent the condition even in individuals with genetic or
environmental risk factors (299, 300). Buffering capacity is finite,
however, in some individuals more so than others. When an
individual’s buffering capacity is exceeded by excessive or unusual
perturbations the result is increased phenotypic variation (292,
301, 302). In populations, this stress-sensitive storage and release
of suppressed alleles may favor adaptive evolution (299, 303). In
individuals, the consequences may not be quite so sanguine.

Fetal development has to be insulated from the damaging
impacts of environmental and genetic perturbations to produce
highly predictable phenotypes (300). The relevance of HSP to
NDD is highlighted by their known effects on development;
hsp90, for example, occupies a critical position in development
because most of its client proteins are signal transducers
(282, 292, 304–306). Because cell division is such an active
process during fetal life, the opportunities for genetic mistakes
to occur—especially in developing neurons—are legion. From
studies in various organisms we have learned that many HSP
buffer developmental perturbations onmorphological traits (300,
305). In embryonic mice, exposure to subthreshold levels of
environmental toxins induces HSP activity; inhibition of HSP
leads to structural brain abnormalities and epileptogenesis (307).

In experimental animals, HSP activity can be inhibited in
various ways. In real life, HSP is naturally variable and individuals
differ in their capacity to generate buffering activity. There is
substantial inter-individual variation in HSP induction during
embryonic development of the central nervous system, where

chaperones are essential to neuronal differentiation and survival
(308). Embryos with stronger induction of HSP are less likely
to be affected by inherited mutations; their development is
more robust because mutations are less likely to be expressed
(309). Clinically, Individual differences in HSP buffering are also
associated with vulnerability to heart disease (310, 311) and the
likelihood of extreme longevity (312, 313).

Throughout life, HSP concentrations are sensitive to tissue
damage or destruction; concentrations are higher in patients with
cardiovascular and autoimmune disease (314). HSP are induced
in response to brain pathology; e.g., stroke, neurodegenerative
disease, epilepsy, and trauma. One in particular, hsp90, is
constitutively expressed in brain throughout life (315) and
is especially abundant in limbic system-related structures
such as the hippocampus (316). It is necessary for efficient
neurotransmitter release at the presynaptic terminal and the
development of receptors in the post-synaptic membrane (317).

The decline of HSP response with aging may be a cause
of neurodegenerative disease (318). If unfolded or misfolded
proteins are not recognized by HSP, they are capable of forming
aggregates (319). Conversely, a vigorous HSP response reduces
amyloid production (320, 321) and inhibits the aggregation
of tau protein (322), alpha-synuclein (323), and huntingtin
(324, 325). It induces the clearance of aggregates by autophagy
(323, 326, 327).

Studies of HSP in autism and schizophrenia show higher levels
of hsp70 (279, 328, 329) and increased auto-antibodies to hsp60,
70, and 90 and CRP40, a catecholamine-regulated heat-shock-
like protein (33–278, 278–328, 328–334). In neural stem cells
from schizophrenic patients, there is higher variability in the
levels of HSF1, an HSP transcription factor (307). Interestingly,
HSP levels are elevated in patients with temporal lobe epilepsy
and lupus who are also psychotic, but not in those who are not
(287, 307, 335).

The cited studies are by no means definitive. They are
compromised by inconsistent findings and results that may be
affected by the medications patients are taking. Nevertheless,
it seems to be a promising area to pursue. Perhaps there is
an intrinsic or acquired weakness in normal neuroprotective
mechanisms in autism and schizophrenia (307, 328). Perhaps,
too, the proper approach to disorders arising from the
interactions of so many genes and genomic variants might dwell
in the “hubs” (291, 295) and “bow-ties” (336, 337) that reside
along the trajectory from genotype to phenotype, and represented
by the heat-shock proteins (327).

Variable Buffering
The approach may be promising but it won’t be easy. HSP
are an extended family of more than 100 proteins, traditionally
identified by their molecular weight (from 8 to 110 kDa). Each
category includes multiple proteins, many of which have multiple
isoforms, not all of which are easily measurable (338–340).
Individual HSP vary considerably in their expression, protein
structure, localization, and ability to be induced. Complicating
matters, the buffering capacity of an individual HSP is guided by
multiple “co-chaperones” (291).
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The behavior of HSP is not consistent. Hsp90, for example,
protects the cell from genetic variation; or it may have the
opposite effect, rescuing proteins that arise from mutations
with folding or stability defects (341). Thus, they may maintain
mutated proteins in a partially active state, permitting them
to persist within the cell, to aggregate or cause some other
mischief (327).

Buffering mechanisms also operate at different levels among
the multiple components that contribute to every polygenic trait
(342). The subunits that participate in a complex trait—single
genes, or sets of well-integrated genes—may be robust or not.
Subunits most likely to be robust are ones with high mutation
rates, often at the expense of reduced robustness of genes or
subunits with lower mutation rates. This may pose constraints
or lead to conflicts that influence the buffering of the unit as a
whole (256).

Nor do HSP operate in a vacuum. Whether a chaperone
acts as a buffer, lessening mutational effects, or as a potentiator,
increasing mutational effects, is not a fixed property of the
protein itself but is influenced by the different mutations
with which it interacts (343). The actions of HSP are also
influenced by their genetic background (157, 344, 345). We don’t
know much about the genes that participate in the heat-shock
response in humans, but 59 genes (7 positive activators and
52 negative regulators) participate in the heat-shock response
in Caenorhabditis elegans (346). In Saccharomyces cerevisiae, no
fewer than a thousand genes have been identified that alter
sensitivity to heat shock (347).

The thresholds of robustness mechanisms are not only a
priori variable, but are influenced by epigenetic changes that
occur throughout one’s life and that occurred in generations
past (172, 283, 293, 301, 309, 348–350). Genetic variation
present in one generation can influence phenotypic traits in
the next, even if individuals do not inherit the variation.
The environment experienced by one generation can influence
phenotypic variation in the next several (351).

The critical balance between stability and variability,
therefore, hovers on the fine edge of criticality. The cell
has developed an exquisite system to prevent or mitigate
destabilizing events and thus preserve its integrity and that of the
organism. Understanding and possibly manipulating the agents
that buffer cells from destabilizing agents holds at least some
promise as a therapeutic approach to complex phenotypes like
cancer and autoimmune disease (352–355). It may be a frail reed
in the face of the complexity of genomic behavior but is one that
is close to hand.

If Things Were Simple, Word Would Have

Gotten Around
Individual differences in buffering capacity and genetic
background are two of many elements that contribute to the
variable and unpredictable expression of clinical phenotypes.
Is it possible, therefore, to make useful predictions about
the phenotypes of individuals from their complete genome
sequences? The “typical” phenotypic outcome of an individual’s
genome may well be predictable, but it is much more difficult to

predict the actual outcome for a particular individual. Individual
outcomes are no more than probabilistic. The genome, like
the neural connectome, exists in a metastable state, a critical,
narrow edge between order and chaos. In such states, irreducible
uncertainties and unexpected hazards are always present. The
premises of “personalized medicine” look more like Laplace’s
demon every day.

The problem, for a personalized medicine demon, is that
the relation of genotype and the phenotype of complex traits is
decidedly non-linear. Non-linearity is characterized by sudden
changes in phenotype with small changes in genotype; thus, not
all genes are equally correlated with the trait whose ontogeny
they control (356). Non-linearities are a ubiquitous feature of
development and gene expression networks (357–364). Non-
linearities are given to sudden discontinuities and can lapse,
unexpectedly, into catastrophe (365–367).

Non-linearity is a bother to demons but is necessary for
robustness to co-exist with evolvability. In model genotypes
with low levels of non-linearity, stability is the rule; those with
non-linear dynamics allow expression levels to be robust to
small perturbations, while generating high diversity under larger
perturbations; that is, evolvability (368, 369).

Genetic variation influences the phenotype by processes that
act at different scales, times, and locations within the organism
(182, 364, 370). The trajectory from genotype to phenotype,
therefore, is not only complicated, it is complex. At every step,
one is confronted with complex systems composed of parts that
are complex systems in their own right and complex systems
tend to show surprising and unexpected behavior. The behavior
of every system is affected by interactions, direct and indirect,
with all the others. The individual and his destiny can’t be
understood in terms of one or two such sub-systems, or even all
of them together.

The individual components of complex systems interact
in manifold ways, including highly dynamic regulatory and
feedback mechanisms (371). Within this framework, a single
cause can produce multiple and unpredictable effects and even
small fluctuations can have unexpected consequences. Linear
casual explanations—that conceive reality as a linear succession
of elementary events from cause to effect—are usually unable to
describe how complex systems behave (372, 373).

One struggles, therefore, to generate clinical insights from the
information we have gleaned from years of study of our two most
important adaptive systems:

• Complex systems may never be given to complete
descriptions, or unchanging and non-provisional rules
to control their behavior (374).

• We still know frustratingly little about how changes in
genotype determine the changes in phenotype (341).

• The “sequence space” of the genome is so vast that
an exhaustive functional mapping and characterization of
epistasis for any protein or gene is nigh-on impossible (375).

• The genetic information we are lacking about traits and
diseases is potentially immense (376).

• The phenotype of each individual is usually considered as an
interaction between two variables: the genes each individual
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carries and the environment that they experience. . . (but) the
evidence suggests this is not always the case (351).

• It is futile to seek the basis of autism and schizophrenia amidst
the profound complexity and variability of genetic and neural
networks. Our present nosological constructs are imperfect,
only “umbrella terms” that comprise a heterogenous mix of
“real” conditions (377, 378).

• The complexity of brain function and structure is not reflected
in current psychiatric disease nosology (238).

If such were really the case, we would be left with nothing
but truisms: complex systems like the genome and neural
connectome are “intrinsically and irreducibly hazardous” (45).
Or rhetorical flourishes: “The same “genes” that drive us mad
have made us human” (379). I prefer to think that our “umbrella
terms,” fuzzy sets as they are, may be the best way to translate
the complexities of genomics and connectomics in a meaningful
way. Mental disorders, I think, are as variable and mutable as the
neural networks and the genome whence they arise. They are as
variable and unpredictable as people are.

I prefer to leave the reader with more than an intellectual
dead-end. Appreciating the complexity of the genome is an
opportunity to revise our expectations of how it generates
complex disease and how we may address the crucial issue
of prevention.

About genes:

• The genome is not a static blueprint but a dynamic participant
in the affairs of the cell.

• There is more to genomic exploration than SNPs and QTLs.
• What matters about the genome is not only its base-pair

sequence but its behavior, especially its interactions with the
environment, which is mediated by proteins and RNAs of
various stripe.

• Genomic expression is intrinsically noisy, stochastic,
and unpredictable.

• The dynamic and mutable nature of gene expression may be a
source of species adaptability but it is also a potential source of
individual vulnerability.

About mutations:

• They occur frequently, especially in the human genome.
• Mutations occur more often in specific regions of the genome

and are more likely to occur in some individuals.
• Mutations that are only slightly deleterious (or beneficial) are

subject to weak selection (380).
• Therefore, mutations accumulate, a reservoir of potential

adaptions for the species but, on occasion, of disastrous events
in the lives of individuals (381).

About phenotypes:

• From transcription to RNA processing, translation, and

protein folding and all the way up to protein activity and

cellular fitness, there aremany layers of biological organization

where the effects of mutation can be transformed (382).
• To make predictions about the phenotypes of individuals,

it is clear that knowledge of genome sequencing is usually

insufficient. Rather, we need to consider how genetic,
environmental and stochastic variation, together with
transgenerational effects, combine to determine the
phenotypes of individuals (351).

• The processes that govern the trajectory from phenotype
to genotype hover on a critical edge between stability
and variability.

• The spectrum of outcomes can be related to continuous
functions in variable elements.

• Catastrophic outcomesmay be related to non-linear functions.

Complex traits, including complex diseases, are attributable to
“multiple genes of small effect”-–among which are included
all the sources of genomic, proteomic and neuronal variability.
Nevertheless, complex traits exist and although quite variable,
they occur with sufficient regularity to allow reliable descriptions
and exhibit behavior that is more-or-less consistent. It is this,
rather than their variability, that should entertain our interest. A
current explanation is that mutations occurring inmany different
forms and at hundreds of targets converge on a much smaller
number of molecular, cellular and anatomical pathways critical
to the development and functioning of the CNS (383–385). The
assumption is that aberrations in the expression of a great many
genes affect a much smaller number of developmental pathways.
It reflects a characteristic of complex systems: hierarchical
networks are more concentrated higher up the scale. Although
we suspect that developmental pathways are fewer in number
than the genes involved, this is merely an assumption (360).
However, we know that gene expression is processed through
a much smaller number of “bow tie” processes that govern the
generation of phenotypes and that maintain robustness without
compromising evolvability. They deserve critical analysis.

At the level of pure theory, we may entertain a speculation
about how primate evolution and then evolution of the hominids
was so successful in the face of such a high degree of variability—
to a point where even mechanisms designed to buffer it from
perturbations are as variable and unpredictable. Ironically, an
answer may be gleaned from computer simulations and studies
of evolution among cancer cells and bacteria. From such studies,
we learn that reproductive fitness is not the only goal of natural
selection, nor is adaptation. Populations with lower initial fitness
systematically adapt more rapidly than populations with higher
initial fitness. Genotypes with lower fitness are more adaptable,
over the long run, than those with higher fitness (381, 386–388).

“It is tempting to suggest that the promiscuity inherent in
biology is tolerated withminimal detriment rather than corrected
at high cost” (389). The promiscuity inherent in biology is not
only tolerated, it is put to good use. If anything, it prevents a
species from achieving a “genetic optimum.” The hydra have
achieved a genetic optimum, I suppose, and so have crocodilians
and turtles. But their optimum is really only a genetic ceiling.
Hominids have achieved adaptability, not a genetic optimum. As
a species, we are fit but not perfect. Adaptability is not a perfect
fit to one’s niche but the capacity to accommodate a wide range
of potential environments. It is the genomic flexibility that allows
small and large changes to bemade in response to change. To that
end we have evolved the trait of evolvability, which is manifest
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in variability at every point on the genotype-to-phenotype map.
Trait evolvability, however, exists in balance with trait robustness.
The balance is not perfectly balanced, however. It is distributed
unevenly. It confers stability to most of us, albeit in graded
fashion; less to many and very little to an unfortunate few.

AUTHOR’S NOTE

My hypothesis is that evolvability is relevant to the problems
of psychiatric genetics: the problem of missing heritability,
for example; of the variable expression of neurodevelopmental
disorders arising from a particular genetic aberration; and the
intriguing problem of autism and schizophrenia, disorders that
are highly heritable but persist in spite of conferring low
reproductive success. Genomic variability drove the evolution
of neural complexity; it was also fuel for the evolvability of
the hominid lineage. The paper is a review of mechanisms of
genomic variability that are well-developed, scientifically, and
also clinically relevant. The genetic elements that conferred
variability and evolvability happen to be over-represented in

autism and schizophrenia. The relevance of evolvability to
neuropsychiatric disorders is illustrated by the robustness of the
human genome, its ability to maintain stability in the face of
genomic variability; yet it is also uniquely evolvable. The balance
between robustness and evolvability is illustrated by buffering
mechanisms that are structural or dynamic. Both, however, are
fragile and subject to a high degree of inter-individual variation.
The paper introduces a novel way to think about the genetics
of neuropsychiatric disorders in particular, complex traits and
complex disease in general.
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