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Here we summarize recent progress in machine learning model for diagnosis of Autism

Spectrum Disorder (ASD) and Attention-deficit/Hyperactivity Disorder (ADHD). We outline

and describe themachine-learning, especially deep-learning, techniques that are suitable

for addressing research questions in this domain, pitfalls of the available methods, as well

as future directions for the field. We envision a future where the diagnosis of ASD, ADHD,

and other mental disorders is accomplished, and quantified using imaging techniques,

such as MRI, and machine-learning models.
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1. INTRODUCTION

Modern techniques to diagnose mental disorders were first established in the late 19th century
(Laffey, 2003) but its genesis can be traced back to 4th century BCE (Elkes and Thorpe, 1967).
Gold standard for diagnosing most mental-disorders rely primarily on information collected from
various informants (e.g., parents, teachers) regarding the onset, course, and duration of various
behavioral descriptors that are then considered by providers when conferring a diagnostic decision
based on DSM-5/International Classification of Diseases-10th Edition (ICD-10) criteria (World
Health Organization, 2004; Pelham et al., 2005; American Psychiatric Association, 2013). The
methods used by providers to obtain this information range from relatively subjective (e.g., rating
scales) and unstructured (e.g., unstructured clinical interviews) to more objective (e.g., direct
observations) and structured (e.g., structured diagnostic interviews) approaches.

Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD)
are prevalent brain disorders among children which usually persist into adulthood. ASD
is a neurodevelopmental disorder characterized by communication, behavior and social
interaction deficits in patients which may include repetitive behavior, irritability, and
attention problems (Maenner et al., 2020). Since the introduction of the 5th edition of
the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), ASD has reflected
a larger umbrella diagnostic entity that was previously reflective of multiple discrete
disorders including Autistic Disorder, Asperger’s syndrome, and other Pervasive Developmental
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Disorders (Kogan et al., 2009). Recent studies suggest that the
prevalence of ASD among children has increased from 1 in 100
to 1 in 59 over 14 years (from the year 2000 to 2014) (Maenner
et al., 2020). ADHD is also a common brain disorder
among children which causes problems, such as hyperactivity,
impulsivity, and inattention. Like ASD, ADHD often continues
to adulthood (Sibley et al., 2017). Approximately 5–9.4% of
children are diagnosed with the disorder (Polanczyk et al.,
2007; Danielson et al., 2018). Prevalence of ASD, and ADHD
in children necessitates accurate and timely identification, and
diagnosis of these disorders.

Current practice guidelines for the assessment, diagnosis,
and treatment of ADHD, and ASD recommend an approach
that adheres to the Diagnostic and Statistical Manual (DSM)
symptom criteria (Wolraich et al., 2019) with an emphasis
on verifying that symptoms occur across more than one
setting (e.g., home, school). These practice guidelines highlight
the importance of ruling out the presence of co-occurring
and/or alternative diagnoses (e.g., anxiety, mood disorders,
learning problems) that share notable features with ADHD (e.g.,
difficulty concentrating) or ASD further complicating diagnostic
assessment. Despite the development and revision of these
practice guidelines for over two decades (Perrin et al., 2001);
there is evidence of substantial variability in the extent to which
these practice guidelines are implemented in routine clinical
care in the diagnosis of the disorder (Epstein et al., 2014).
Lack of uniformity in adoption of these practice guidelines has
the potential to result in over-, under-, and/or misdiagnosis
of the disorder (for a review, see Sciutto and Eisenberg,
2007). In fact, Bruchmüller et al. (2012) demonstrated that
a sizeable number of professionals fail to adhere to DSM or
International Classification of Diseases (ICD) criteria altogether
when diagnosing the disorder. Specifically, an average of 16.7%
providers participating in their study assigned a diagnosis of
ADHD to an example patient despite multiple criteria missing
and/or the child presenting with a different diagnosis altogether.
Follow-up analyses among only those providing a diagnosis
(rather than deferring their diagnostic decision due to lack
of information) revealed a false positive rate of nearly 20%.
While exact estimates of misdiagnosis of ADHD, and ASD
are not available, if the results of this study reflect typical
clinical practice and nearly 1/5 of children diagnosed with
ADHD or ASD in the population are currently misdiagnosed
(impacting one million children in the US). These children may
fail to obtain treatment for other diagnoses they have (e.g.,
anxiety disorders) or receive treatments that are unnecessary
(Danielson et al., 2018), resulting in financial burden (Pelham
et al., 2007), and may result in snatching-away services actually
needed by children with the disorders (Raiker et al., 2017). Other
obstacles for diagnosis include disagreement between parent-
and teacher-rated perceptions (Narad et al., 2015), substantial
time-commitment required for interviews (Pelham et al., 2005),
andmalingering/faking symptoms of ADHD, and ASD especially
in adulthood (Musso and Gouvier, 2014). Collectively, these
limitations have resulted in calls for more optimal assessment
methods for psychological disorders, such as cognitive (e.g.,

tasks) or neurobiological (e.g., imaging) methods (Linden, 2012;
Castellanos et al., 2013).

In the 1990’s, advent of magnetic resonance imaging (MRI)
allowed one to directly study the brain activity without requiring
people to undergo injections, surgery, ingest substances, or
to be exposed to ionizing radiation. It was also considered
potentially more objective than other quantitative methods, such
as continuous performance tests (Inoue et al., 1998; Nichols
and Waschbusch, 2004; Faraone et al., 2016; Park et al., 2019)
or rating scales (Bruchmüller et al., 2012; Raiker et al., 2017).
Suddenly, computational scientists with little or no training
in psychiatry or psychology could analyze data collected from
imaging methods and make inferences for patients with mental
disorders (Castellanos and Aoki, 2016).

Machine-learning is a subfield of Artificial Intelligence,
that has the potential to substantially enhance the role of
computational methods in neuroscience. This is apparent by
substantial work that has been carried out in developing
machine-learning models, and deep-learning techniques to
process high-dimensional MRI data to model neural pathways
that govern the brains of various mental disorders (Vieira
et al., 2017). These efforts have resulted in development
of machine-learning methods to classify Alzheimer’s, Mild
Cognitive impairment (Duchesnay et al., 2011), Temporal
Lobe Epilepsy, Schizophrenia, Parkinson (Bind et al., 2015),
Dementia (Ye et al., 2011; Ahmed et al., 2018; Pellegrini et al.,
2018), ADHD (Eslami and Saeed, 2018b; Itani et al., 2019),
ASD (Pagnozzi et al., 2018; Eslami et al., 2019; Hyde et al., 2019),
and major depression (Gao et al., 2018). These machine-learning
models rely on statistical algorithms, and are suitable for complex
problems involving combinatorial explosion of possibilities or
non-linear processes where traditional computational models fail
in quality or scalability. Figure 1 shows the traditional approach
(outlined above) vs. quantitative ML methods (outlined below)
for diagnosing brain disorders.

1.1. Motivation for Machine-Learning to
Guide the Diagnostic Processes, Related
Work, and Contributions of This Paper
As discussed above, the presence of certain behavioral
characteristics, such as attention problems do not always
indicate a specific diagnostic entity (e.g., ADHD) given that
nebulous symptoms, such as attention problems occur across
a variety of disorders (e.g., depression, ASD, anxiety). As a
result, conferral of a diagnosis based on DSM-5 or ICD-10
criterion ascribes an underlying cause to the various behavior
or emotional difficulties without a method available to verify
that the disorder arises from underlying biological dysfunction.
Collectively, the absence of specific physiological, cognitive, or
biological validation creates a host of challenges regarding our
ability to confirm existing diagnostic approaches (Saeed, 2018).

Recent advances in neuroscience and brain imaging have
paved the way for understanding the function and structure of the
brain in more detail. Traditional statistical methods for analyzing
brain images relied on mass-univariate approaches. However,
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FIGURE 1 | (A) Traditional methods for diagnosing brain disorders vs. (B) classification based on brain imaging and machine learning.

these methods overlook the dependency among various regions
which now are known to be a great source of information
for detection of different brain disorder (Vieira et al., 2017).
ML models, on the other hand, are usually working with the
relationship among various brain regions as their feature vectors
and hence are preferred over other methods. Notably, given the
relative infancy of the integration of neuroscience into clinical
psychology to better understand disorders, such as ASD and
ADHD, the specific brain regions associated with these clinical
disorders and their patterns of interaction are not well-known. It
is likely that the application ofMLmethods to neuroimaging data
in these populations will result in improved understanding of
patterns of neurobiological functioning that would not otherwise
be detectable using othermethods. These advances will ultimately
improve not only our ability to diagnose these disorders but also
augment our understanding of the mechanisms that contribute
to their etiology.

In this survey, we provide a comprehensive report on ML
methods used for diagnosis of ASD and ADHD in recent
years using MRI data sets. To the best of our knowledge,
there is no comprehensive review covering the recent machine
learning methods for ASD and ADHD disorders based on both
fMRI and sMRI data. Besides (f)MRI, other types of brain
data generated using technologies, such as electroencephalogram
(EEG) and Positron Emission Tomography (PET) are used
for studying ADHD and ASD (Duchesnay et al., 2011; Tenev

et al., 2014; Bosl et al., 2018). It is worth mentioning that
based on the effects of ASD on the social interactions of
subjects, facial expression, and eye-tracking measurements have
been used to evaluate the utility of machine learning models
in accurately classifying individuals with and without ASD
(Liu et al., 2016; Jaiswal et al., 2017). Similarly, given the
well-documented neurocognitive dysfunction and alterations in
temperament characteristic of individuals with ADHD, graph
theoretical and community detection algorithms have been
applied to advance our understanding of these deficits in
ADHD (Fair et al., 2012; Karalunas et al., 2014). Personal
Characteristic Data (PCD), and its integration with MRI
data has also shown to give superior performances (Brown
et al., 2012; Ghiassian et al., 2016; Parikh et al., 2019)
for classification for ADHD and ASD data sets. However,
only MRI based machine-learning techniques (for ADHD
and ASD) will be considered within the limited scope of
this review.

In this paper, we organize, and present the applications of
machine-learning for MRI data analysis used for identification,
and classification of ADHD and ASD. The paper will give
a broad overview of the existing techniques for ASD and
ADHD classification, and will allow neuroscientists to walk
through the methodology for the design and execution of
these models. We start by reviewing the basics of machine-
learning, and deep-learning strategies. Wherever possible we will
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FIGURE 2 | (A) Architecture of an artificial neuron. (B) Example of a deep feed forward network with two hidden layers.

use MRI data as an example when explaining these concepts.
In next sections, we will identify the motivation and areas
where (and why) these machine-learning models can make
an impact in mental diagnosis. Lastly, we discuss in some
detail the progress that has been made in developing machine-
learning solutions for Autism Spectrum Disorder (ASD) and
Attention-Deficit/Hyperactivity Disorder (ADHD), Identifying
challenges and limitations of current methods, and suggestions
and directions for future research.

2. INTRODUCTION TO MACHINE
LEARNING AND DEEP LEARNING

Machine-Learning (ML) is a subset of artificial intelligence that
gives themachine the ability to learn from data without providing
specific instructions (Alpaydin, 2016). Machine Learning is
divided into three broad categories: supervised learning,
unsupervised learning, and semi-supervised learning. The goal
of supervised learning (Caruana and Niculescu-Mizil, 2006) is
to approximate a function f which maps the input x to output
y in which x refers to training data and y refers to labels which
could be discrete/categorical values (classification) or continues
values (regression). Unlike supervised learning, in unsupervised
learning (Hinton et al., 1999), there is no corresponding
output for the input data. The goal of unsupervised learning
is to draw inference and learn the structure and patterns of
the data (Radford et al., 2015). Cluster analysis is the most
common example of unsupervised learning. Semi-supervised
learning (Zhu and Goldberg, 2009) is a category of ML which
falls between supervised and unsupervised learning. In semi-
supervised learning techniques, unlabeled data is used for
learning the model along with labeled data (Chapelle et al., 2009).

Deep-Learning (DL) (Goodfellow et al., 2016) is a branch
of ML which is inspired by the information processing in the
human brain. A deep neural network (DNN) (LeCun et al., 2015)

consists of one input layer, several hidden layers, and one output
layer. Hidden layers are responsible for extracting useful features
from the input data. Each layer consists of several units/nodes
called artificial neurons (Krizhevsky et al., 2012) (Figures 2A,B).
The simplest type of deep neural network is a deep feed forward
network in which the nodes in each layer are connected to the
nodes in the next layer (Glorot and Bengio, 2010). There is no
cycle and no connection between nodes in the same layer and
as the name implies, information flows forward from the input
layer to the output layer of the network. Multi-layer-perceptron
(MLP) (Hornik et al., 1989; Gardner and Dorling, 1998) is a
specific type of feed-forward network in which each node is
connected to all the nodes in the next layer. Each node receives
the input from nodes in the previous layer, applies some linear
and non-linear transformations and transmits it to the next
layer. The information is propagated (Rumelhart et al., 1986)
through the network over the weighted links that connect nodes
of consecutive layers. Activation of the node z at each layer can
be computed using the following equation:

a = σ (

m
∑

i=1

wixi + b) (1)

In which x corresponds to values of nodes in the previous layer,
w corresponds to the weights of connections between node z and
nodes in the previous layer, b corresponds to bias and σ is a
non-linear activation function. Non-linear activation functions
(Huang and Babri, 1998) are essential parts of neural networks
that enable them to learn non-linear and complicated functions.
Sigmoid, tangent hyperbolic (tanh) (Schmidhuber, 2015), and
rectified linear (ReLU) (Nair and Hinton, 2010) are the most
used activation functions in neural networks. Vargas et al. (2017)
state that number of deep learning publications increased from
39 to 879 between 2006 and 2017. Similarly, the application of
deep-learning models applied for identification and diagnosis
of mental-disorders have increased rapidly in recent years. In
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the following section we focus on description of deep-learning
models, methods, and techniques to make it more accessible
to neuroscientists.

2.1. Training of a Deep-Learning Model
The set of weights and biases of the network are known
as its parameters or degrees of freedom which should be
optimized during the training process. Training a neural network
starts by assigning random parameters to the network. The
input data is propagated to the network by applying a non-
linear transformation using Equation (1). The input of each
intermediate layer of the network is the output of its previous
layer. Finally, the prediction error is calculated in the output
layer by applying a loss function to the predicted value and
ground truth. Depending on the type of problem and the output,
appropriate loss functions should be considered. For example,
Mean Squared Error (MSE) and Mean Absolute Error (MAE)
are well-known functions in regression problems (Prasad and
Rao, 1990). Another example is cross entropy loss which is
used for multi-class classification. The error computed using the
loss function is used to update the parameters of the model in
order to reduce the prediction error. The most famous algorithm
for training the neural networks is called backpropagation
(Hecht-Nielsen, 1989; Rezende et al., 2014). Backpropagation is
based upon an optimization algorithm called stochastic gradient
descent (SGD) (Bottou, 2012) which changes the values of
the network parameters by computing the gradient of the loss
function with respect to each of them using the chain rule.
The value of each parameter is increased or decreased in order
to reduce the prediction error of the network. This process is
repeated several times during the training process until training
loss becomes below a threshold or a maximum number of
iterations is reached. After the training process, the network is
ready to use for predicting the output of unseen data (test set).

2.2. Overfitting in Neural Networks
Over-fitting is one of themajor issues in DL that causes themodel
to fit very well to the training data but performs poorly for unseen
data. Deep neural networks usually contain many parameters,
millions in the case of very deep networks (Krizhevsky et al., 2012;
Szegedy et al., 2015) which causes the over-fitting problem. This is
particularly problematic with respect to generalizing findings to a
clinical setting. Specifically, given that the actual diagnostic status
of patients (i.e., they have/do not have the disorder) is unknown
at the time of presentation it is critical that the adoption of
DL methods and the integration of neuroimaging are applicable
to new cases rather than cases included in research samples.
Fortunately, over-fitting can be prevented by using regularization
methods. Regularization is a class of approaches the reduce the
generalization error of a network without reducing its training
error by adding somemodifications to the learning process. Some
of the most well-known regularization methods are as follows:

2.2.1. L1/L2 Regularization
L1 and L2 regularization are one of the most popular
regularization methods in which a regularization term is added
to the cost function. Equations (2) and (3) show the L1 and L2

regularization terms:

λ

2
||w|| =

λ

2

m
∑

j=1

wj (2)

λ

2
||w||2 =

λ

2

m
∑

j=1

w2
j (3)

In this equations λ is the regularization parameter. Adding these
equations to the cost function penalized the value of network
weights and therefore leads it to a simpler model and avoids
the overfitting.

2.2.2. Drop-Out
Dropouts ignore some of the units (and their corresponding
connections) randomly in the training process which as a result
reduces the number of parameters of the model (Srivastava et al.,
2014).

2.2.3. Batch Normalization
Batch normalization stabilizes the training of deep neural
networks, which helps faster convergence. Initially, BN was
proposed to reduce the internal covariance shift, but later,
Santurkar et al. (2018) studied the effect of BN and concluded
that the effect of BN is mainly on smoothening the landscape. In
this method, the output of each activation layer is normalized by
subtracting the mean and dividing it to the standard deviation of
the batch. Batch normalization regularizes the model and hence
can reduce its overfitting (Ioffe and Szegedy, 2015).

3. MAGNETIC RESONANCE IMAGING
(MRI), AND FEATURE EXTRACTION

Functional magnetic resonance imaging or functional MRI
(fMRI) is a non-invasive technique that measures the brain
activity by detecting changes associated with blood flow
(Logothetis et al., 2001). The techniques exploits the fact that
cerebral blood flow and neural activity are correlated, i.e., blood
flow in the brain where neurons are firing.

Structural MRI (sMRI) is also a non-invasive technique
that provides sequences of brain tissue contrast by varying the
excitation, and the repetition times to image different structure
of the brain. These sequences produce volumetric measurements
of the brain structure (Bauer et al., 2013). Similar to fMRI, sMRI
data has shown to contain quantifiable biomarkers and features,
such as early circumference enlargement and volume overgrowth
of the brain, that can be used as the input to machine learning
models for detection of brain disorders.

3.1. Defining Features for Classification
Using Functional MRI (fMRI) Data
An important step for designing a solution using ML models
is deriving features from the data. Although substantial work
dedicated to understanding the neurobiological underpinnings
of both ADHD and ASD is ongoing, pinpointing the exact
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neurobiological correlates remains a challenge creating
difficulties related to optimal feature selection. Fortunately,
several approaches outlined below have been developed to
assist in this endeavor. fMRI based features are extracted
from the time series of voxels or regions of interest (ROI).
ROIs can be defined based on structural properties like
anatomical atlases or functional features of fMRI time series
using clustering algorithms. These methods can also be applied
to the components generated using Independent Component
Analysis (ICA) method. ICA is a data analysis method that finds
the maximally independent components of the brain without
explicit prior knowledge (Calhoun et al., 2001). In the following
sub-section, we explain the most frequently used methods for
defining ML features.

3.1.1. Functional Connectivity
One of the concepts that is widely used to generate features
from fMRI data is the strength of functional connections between
pairs of regions. Functional connectivity between two regions
of the brain can be approximated using different measures as
explained below:
Pearson’s correlation
Pearson’s correlation is the most usedmeasure for approximating
functional connectivity. It works well to measure the linear
association between two time series, v and u, and mostly
is calculated using the following equation: The Pearson’s
correlation between variables v and u is calculated using the
following equation:

ρuv =

∑T
t=1(ut − ū)(vt − v̄)

√

∑T
t=1(ut − ū)2

√

∑T
t=1(vt − v̄)2

(4)

Spearman’s rank correlation
Unlike Pearson’s correlation, Spearman’s rank correlation
measures the strength of a monotonic association between two
variables. Spearman’s rank correlation works well when the
variables are rank-ordered. This measure calculates the Pearson’s
correlation between the ranked values of variables u and v. In the
case of distinct ranks in the data, Spearman’s correlation can be
calculated using the following equation: This measure calculates
the Pearson’s correlation between the ranked values of variables
u and v. In the case of distinct ranks in the data, Spearman’s
correlation can be calculated using the following equation:

ρuv = 1−
6
∑

d2i
n(n2 − 1)

(5)

In this equation d corresponds to the difference between two
corresponding ranks.
Mutual information
Another measure for estimating the functional connectivity is
the mutual information between two-time courses which can be
computed using the following equation:

MI(u, v) =
∑

u∈Su

∑

v∈Sv

p(u, v) log(
p(u, v)

p(u)p(v)
) (6)

3.1.2. Dynamic Functional Connectivity
Functional connectivity among regions of the brain is shown to
have a dynamic behavior rather than being static. This means
that the strength of association between the two regions may
change over time. This concept is called Dynamic Functional
Connectivity (DFC), and is shown to be increasingly important in
understanding cognitive processing (Chen et al., 2020b; Kinany
et al., 2020; Liu et al., 2020; Premi et al., 2020), and mental
disorders including ADHD (Kaboodvand et al., 2020), and ASD
(Mash et al., 2019; Rabany et al., 2019). This dynamic behavior
is usually detected using a sliding window framework. In this
framework, a window of size w slides over the time series and
functional connectivity among all regions are computed based
on the covered time points in the window. The window slides
over s elements and covers the next consecutive w time points.
This process is repeated until the window reaches the end of the
time series (Preti et al., 2017). An example of the sliding window
framework is shown in Figure 3.

3.1.3. Graph Theoretical Measures
The array consisting of all pairwise correlations is usually
considered as the feature vector for training ML models.
Alternatively, the correlation among various regions can be
used to construct a graph called the brain functional network.
After removing weak correlations based on a predefined
threshold, remaining correlations define the edges connecting
brain regions to each other. This graph can be considered as
a weighted graph (strength of correlations as edge weights)
or an unweighted graph. Computing the properties of brain
functional network, such as degree distribution (Iturria-Medina
et al., 2008), clustering coefficient (Supekar et al., 2008), closeness
centrality (Lee and Xue, 2017), etc., represents another method
for defining features from fMRI data which has been widely
used in brain disorder diagnosis (Colby et al., 2012; Brier et al.,
2014; Khazaee et al., 2015; Openneer et al., 2020). Examples of
graph-theoretical properties used in the literature are provided
in Supplementary Table 1.

3.1.4. Frequency Properties
Another practice for extracting features from fMRI data is
applying Fast Fourier Transformation (FFT) to time series of
each voxel/region and transform the data from the time domain
to frequency domain (Kuang and He, 2014; Kuang et al., 2014).
For each voxel/region, the frequencies associated with the highest
value of amplitudes are selected as the feature from fMRI data.

3.2. Defining Features for Classification
Using Structural MRI (sMRI) Data
In this section, we broadly discuss the most commonly used
methods for defining features from sMRI data.

3.2.1. Morphometric Features
High resolution images generated using the MRI technology
provide detailed information about the structure of the brain.
Different morphometric attributes, such as volume, area,
thickness, curvature, and folding index of different regions are
widely used as the features of each subject for the classification
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FIGURE 3 | Sliding window Framework for computing Dynamic functional connectivity (DFC) is shown. DFC is an expansion of traditional functional connectivity and

assumes that functional connectivity changes over a short time - leading to more richer analysis of fMRI data using machine-learning models.

task. These features can be easily extracted from tools, such as
FreeSurfer. FreeSurfer is an open-source tool that is automated to
extract key features in the brain by providing a full preprocessing
to obtain morphometric features. The preprocessing includes
skill stripping, gray-whitematter segmentation, reconstruction of
the cortical surface, and region labeling (Fischl, 2012).

3.2.2. Morphological Networks
Interconnectivity between morphological information of brain
regions is another way for defining feature vectors. InWang et al.

(2018), morphological connectivity is defined as 1 −
d(xi, xj)

D
in

which xi refer to a vector containing morphometric features of
regions i, such as cortical thickness, cortical curvature, folding
index, brain volume, and surface area, d refers to mahalanobis
distance and D is an integer value. Similarly, Kong et al. (2019)
compute the connectivity between two ROIs based on their gray

matter volume using the equation
1

d(a, b)+ 1
in which d(a, b) =

|t(a) − t(b)|2 where t(a) corresponds to the gray matter volume
of region a. Similarity-Based Extraction of GraphNetworks using
Gray Matter MRI Scans are also shown (Tijms et al., 2012;
Seidlitz et al., 2018) to provide robust, and biologically plausible
individual structural connectomes (Khundrakpam et al., 2019)
from human neuroimaging.

4. DETECTION OF ASD/ADHD USING
CONVENTIONAL ML METHODS

The identification of relevant features utilizing the methods
described above allow for further examination of the
extent to which these features may aid in the diagnosis of
ADHD and ASD. In this section, we provide an overview
of studies that used the conventional machine learning
methods, such as SVM and Random forest for classification of
ASD and ADHD.
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4.1. ADHD Classification
SVM has been evaluated extensively in the classification of
ADHD using fMRI and MRI data. In dos Santos Siqueira et al.
(2014) a functional brain graph is constructed by computing
Pearson’s correlation between time series of each pair of regions,
centrality measures of the graph (degree, closeness, betweenness,
Eigenvector, and Burt’s constraint) are considered as features,
and SVM is used for the classification and the highest achieved
accuracy across multiple sites was 65%, while a site-by-site
accuracy was 77%. In Chang et al. (2012), features from structural
MRI are extracted using isotropic local binary patterns and are
fed to SVM classifier. The isotropic local binary pattern (LBT) is
a powerful technique used in computer vision. LBT is computed
in three steps; picked a pixel with its neighborhood pixels P,
the neighborhood is thresholded using the pixel value, and the
pixel value will be the sum of the binary number, and then
after LBT histogram of regions is used to define the features.
Chang et al. (2012) uses the LBT with the sMRI data fed as
2D images. The highest accuracy they achieved was 69.95%.
Colby et al. (2012) applied SVM on features extracted from fMRI
including pairwise Pearson’s correlation, global graph theoretical
metrics, nodal and global graph measures of the brain network,
and morphological information from structural MRI including
surface vertices, surface area, graymatter volume, average cortical
thickness, etc. and 55% was achieved from the classification
model. Dai et al. (2012) applied SVM on functional connections
generated using fMRI data, and they achieved an accuracy of
65.87%. Itani et al. (2018) considered the statistical, frequency-
based features extracted from resting-state fMRI data as well
as demographic information and used the decision tree for
classification. The highest accuracies they achieved were 68.3 and
82.4% for the sites New York and Peking, respectively. In Wang
et al. (2016), the authors used KNN for the classification of
functional connectivity generated using resting-state fMRI data
processed using themaximummargin criterion, and the achieved
accuracy was 79.7%. Eslami and Saeed (2018b) incorporated
KNN as the classification method and used the EROS similarity
measure for computing the similarity between the fMRI time
series of different samples.

4.2. ASD Classification
Like ADHD, many studies applied traditional ML models for
the classification of ASD. Our analysis indicates that many ML
methods use ABIDE I/II as a gold standard data sets (Heinsfeld
et al., 2018) to measure their classification accuracy. In Chen
et al. (2016), authors used brain functional connectivity of
different frequency bands as the features and applied SVM for
the classification. In another work (Price et al., 2014), applied
kernel support vector machine (MK-SVM) to static and dynamic
functional connectivity features generated based on a sliding
window mechanism. In Ghiassian et al. (2013), SVM is applied
to a histogram of oriented gradients (HOG) features of fMRI
data. The work presented in Katuwal et al. (2015) applied three
different classification algorithms SVM, Random Forest (RF),
and Gradient Boosting Machine (GBM) using sMRI. The highest
accuracy across all sites was 67%. In another approach, Wang M.
et al. (2019) used KNN and SVM as the classification method to

the low-rank representation of fMRI data. The work presented
in Chen et al. (2015) applied random forest to functional
connectivity of different regions using fMRI data.

5. DETECTION OF ASD/ADHD USING DL
METHODS

DL has become a popular tool for evaluating the utility of
imaging in classifying those with and without different brain
disorders. Countless studies focus on using deep neural networks
for diagnosing ASD and ADHD. In the following subsections,
we describe approaches that are designed based on deep or
shallow neural networks and applied to MRI and fMRI data.
These methods are used either as the classifier or as feature
selectors/extractor.

5.1. ADHD Classification
Different shallow and deep neural network architectures have
been proposed for ADHD classification. One of the first attempts
to use a deep neural network is the study proposed by Kuang
and He (2014). In their proposed method, fMRI time series
of each voxel of the brain is transformed from the time
domain to frequency domain using Fast Fourier transformation.
Frequency associated with the highest amplitude is selected
as the feature of each voxel and used for training a Deep
Belief network. Deshpande et al. (2015) used Fully Connected
Cascade neural network architecture applied to different variety
of features generated from fMRI time series, such as pairwise
Pearson’s correlations, Correlation-Purged Granger Causality,
the correlation between probabilities of recurrences and Kernel
Granger causality. Hao et al. (2015) proposed a method called
Deep Bayesian Network. Their method includes reducing the
dimensionality of fMRI data by using the FFT and Deep Belief
Network applied to each region of the brain, followed by
constructing a Bayesian Network to compute the relationships
between different brain areas and finally use SVM for the
classification. Convolutional Neural Network is explored in
multiple studies (Zou et al., 2017; Qu et al., 2019; Wang Z. et al.,
2019). For example in the study proposed by Qu et al. (2019), the
3D kernel in convolutional network is replaced by their proposed
3D Dense Separated Convolution module in order to reduce the
redundancy of 3D kernels.

5.2. ASD Classification
Different varieties of Autoencoders, such as shallow, deep, sparse,
and denoising are widely used for extracting lower-dimensional
features from fMRI (Guo et al., 2017; Dekhil et al., 2018b;
Heinsfeld et al., 2018; Li H. et al., 2018; Eslami and Saeed, 2019;
Eslami et al., 2019; Wang et al., 2019a) and sMRI (Sen et al.,
2018; Xiao et al., 2018; Kong et al., 2019) data. Dvornek et al.
(2017, 2018, 2019) explored the power of RNN and LSTM for
analyzing fMRI data. In one of their proposed architectures,
the output of each repeating cell in the LSTM network is
connected to a single node making a dense layer (Dvornek
et al., 2017). The averaged output of these nodes over the
whole sequence is fed to a Sigmoid function and shows the
probability of an individual having a diagnosis of ASD. In
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another study (Dvornek et al., 2018), authors expanded the
previous method and incorporated phenotypic information to
the proposed method. They investigated 6 different approaches,
such as repeating phenotypic information along the time
dimension, concatenating it to the time series and feeding it
to the network, or feeding the phenotypic data and the final
output of LSTM to the dense layer. CNN networks are also used
in different studies for diagnosing autism (Brown et al., 2018;
Khosla et al., 2018; Li G. et al., 2018; Parisot et al., 2018; Anirudh
and Thiagarajan, 2019; El-Gazzar et al., 2019a,b). Khosla et al.
(2018) proposed a multi-channel CNN network in which each
channel represents the connectivity of each voxel with specific
regions of interest. Their CNN architecture is made of several
convolutional, max-pooling, and densely connected layers. Their
proposed method is trained on different atlases separately and
the majority vote of the models is used as the final decision. In
another work based on CNN, El-Gazzar et al. (2019a) proposed
using a 1D CNN which takes a matrix containing the average
time series of different regions as the input. Their motivation
behind this approach is using original time series as the input
of the model instead of connectivity features proposed by
other studies, hence extracting non-linear patterns from original
time series data. Parisot et al. (2018) formulated the autism
classification as a graph labeling problem. They represented
the population of the subjects as a sparse weighted graph in
which nodes represent the imaging features and phenotypic
information is integrated as edge weights. The population
graph is then fed into a graph convolutional neural network
which is trained in a semi-supervised manner. Anirudh and
Thiagarajan (2019) proposed bootstrapping graph convolutional
networks for autism classification. In their proposed methods
they followed the strategy proposed by Parisot et al. (2018) to
construct the population graph. They generated an ensemble
of population graphs and a graph CNN for each of them
which is considered as a weak learner. Finally, the mean of
the predictions to each class by all learners is computed and
the label associated with the larger value is assigned to the test
sample. Other variants of neural networks, such as Probabilistic
neural networks, competition neural network, Learning vector
quantization neural network, Elman neural network, etc are also
used for ASD classification. Iidaka (2015) used a probabilistic
neural network for training thresholded functional connectivity
(pairwise Pearson’s correlation) between fMRI time series
extracted from different brain regions which achieved a high
classification accuracy of 90%. Bi et al. (2018) used a cluster
of neural networks containing Probabilistic neural networks,
competition neural networks, learning vector quantization
neural network, Elman neural network, and backpropagation
neural network. The features they considered for their proposed
methods consist of pairwise Pearson’s correlation coefficient as
well as graph-theoretical measures, such as degree, shortest path,
clustering coefficient, and local efficiency of each brain network.

Since different settings are used for conducting the
experiments, a direct comparison of these methods is not
possible. Leave-one-out-cross validation and k-fold cross-
validation (with k = 5 and 10) are the most frequently used
evaluation methods in ASD analysis. On the other hand, the

train-test split is more often used for ADHD analysis since the
ADHD-200 consortium provided the predefined sets of train and
test data. With that said, limitations inherent to the ADHD-200
dataset (Zhao and Castellanos, 2016; Wang et al., 2017; Zhou
et al., 2019) as well as the collection of additional neuroimaging
data across various research groups with smaller samples may
result in increased adoption of leave-one-out-cross validation
and k-fold cross-validation techniques in ADHD samples.
Among traditional ML methods, SVM is the most frequently
used traditional ML and CNN and Autoencoders are the most
used DL methods. Most studies are carried out by using fMRI
data. Even though the combination of fMRI and sMRI could be
a much richer source of information, it has been used in fewer
studies compared to using each modality separately.

We plotted the accuracy of different methods using fMRI
data in Figure 4 (for ASD diagnosis) and Figure 5 (for ADHD
diagnosis). Each circle in each image corresponds to the accuracy
reported in a study. Blue circles correspond to the methods that
are tested on a single dataset, while green circles correspond
to models that are evaluated on several datasets. The size of
each blue circle indicates the standard deviation of accuracies
over multiple datasets. Evaluating a model on multiple datasets
provides a more realistic image of its generalizability. Even
though the accuracy of the model could be very high on a single
dataset, it may not necessarily perform the same across other
datasets. Detailed information (including reported accuracy,
Training size, Test size, and type of testing) related to ML/DL
methods for diagnosing ASD using ML and DL methods with
various modalities is listed in Table 1. Similar information about
the ML/DL methods for diagnosing ADHD is listed in Table 2.

6. EXISTING STRATEGIES TO AVOID
COMMON PITFALLS

6.1. Existing Techniques to Avoid
Overfitting
Overfitting is an inevitable issue in training deep neural networks
on small datasets. Since the number of sMRI and fMRI samples
available in ADHD and ASD repositories are not large enough for
successfully training a deep neural network, researches adopted
different approaches to make their proposed methods robust to
overfitting. In Eslami and Saeed (2019) and Eslami et al. (2019),
the authors proposed a data augmentation technique that applies
Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002) to the examples of ASD and control classes and
increased the size of the training set by 2-folds. In another
study, Dvornek et al. (2017) proposed a data augmentation
method by cropping 10 sequences of length 90 from each time
series randomly which increased the size of the dataset by a
factor of 10. Similarly, Mao et al. (2019) utilized a clipping
strategy which samples fMRI time series to fixed intervals. In
the work presented by Yao and Lu (2019), based on the idea of
GAN, a network called WGAN-C is proposed to augment brain
functional data. Dropout and L1/L2 regularization are heavily
used in DL structures to avoid overfitting (Dvornek et al., 2017;
Brown et al., 2018; Khosla et al., 2018; Parisot et al., 2018; Anirudh
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FIGURE 4 | The graph shows fMRI based studies, to date, and their associated accuracy for classification of ASD. Single data sets refers to the accuracy reported by

using data from a single site, and multiple data sets refers to accuracy reported in the paper using multiple sites.

FIGURE 5 | The graph shows fMRI based studies, to date, and their associated accuracy for classification of ADHD. Single data sets refers to the accuracy reported

by using data from a single site, and multiple data sets refers to using multiple sites.

and Thiagarajan, 2019). Feature selection is another solution
for reducing overfitting. Techniques, such as Recursive Feature
Elimination (RFE) (Katuwal et al., 2015; Wang et al., 2019a,b), F-
score feature selection (Peng et al., 2013; Kong et al., 2019), and
autoencoders (Guo et al., 2017; Dekhil et al., 2018b; Heinsfeld
et al., 2018; Li H. et al., 2018; Sen et al., 2018; Xiao et al., 2018;
Eslami et al., 2019; Kong et al., 2019; Wang et al., 2019a) are
widely used for reducing the number of features.

6.2. Strategies to Deal With Imbalanced
Datasets
Class-imbalance is very common in medical datasets such that
patients often represent the minority class (Rahman and Davis,

2013). This is consistent with the substantially lower base rates
of disorders, such as ADHD or ASD and can create substantial
challenges related to optimizing accuracy by reducing both
false positives and false negatives simultaneously (Youngstrom,
2014). Training ML models using imbalanced data makes the
model biased toward the majority class. Class-imbalanced can
be observed in ASD and ADHD datasets, especially in ADHD-
200 which consists of 491 healthy and 285 ADHD subjects.
Different approaches are utilized to reduce the effect of the
majority class on the final prediction. The machine-learning
community in general has addressed the issue of class-imbalance
in two ways (Chawla et al., 2002): One is by assigning distinct
costs to training examples, and the other is to re-sample the
original data by either oversampling the smaller minority class
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TABLE 1 | Literature review of ASD diagnosis using ML and DL methods is shown.

Modality Train size Test size Classification method Test type Accuracy (%) Remark

fMRI 640 Probabilistic neural network (Iidaka, 2015) LOOCV 90 Subjects are below the

age of 20

296 L2-regularized logistic regression (Plitt et al., 2015) LOOCV 75 Age and IQ matched

subjects

240 SVM (Chen et al., 2016) LOOCV 79.17 Subset of ABIDE 12–18

years old

871 SVC (Abraham et al., 2017) LOSO 67

774 3D-CNN (Khosla et al., 2018) 10-fold CV 73.3

1,013 BrainNetCNN+elementwise layer (Brown et al.,

2018)

5-fold CV 68.7

964 General Linear Model (Nielsen et al., 2013) LOOCV 60

1,035 Denoising AE+MLP (Heinsfeld et al., 2018) 10-fold CV 70

60 Multiple Kernel SVM (Price et al., 2014) LOOCV 90 Subset of NYU dataset

200 52 Random Forest (Chen et al., 2015) train-test 91 Subset of ABIDE dataset

888 222 SVM (Ghiassian et al., 2013) train-test 61.9

93 ± 40 SVM/KNN (Wang M. et al., 2019) 5-fold CV 71.5 ± 4

60.8 ± 30.8 Autoencoder+SLP (Eslami et al., 2019) 10-fold CV 63.8 ± 8

92 ± 54 SVM (Eslami and Saeed, 2019) 5-fold CV 73.7 ± 3.7

49 ± 26 LDA (Mostafa et al., 2019) 10-fold CV 97.3 ±3.3

184 3DCNN C-LSTM (El-Gazzar et al., 2019b) 5-fold CV 77, 73 Two sites (NYU, UM) from

ABIDE dataset

77 ± 21 deep transfer learning neural network (DTL-NN) (Li

H. et al., 2018)

5-fold CV 67.05 ± 2.9

48.2 ± 42.3 SVM (Wang et al., 2019b) 10-fold CV 83.3 ± 6

84 SAE + softmax (Xiao et al., 2018) Averaged

CVa
87.21 School aged children from

ABIDE dataset

1,054 AE + softmax (Wang et al., 2019a) 10-fold CV 93.59

110 DNN-FS (Guo et al., 2017)b 5-fold CV 86.36 Site UM from ABIDE-I

283 SVM (Dekhil et al., 2018b) LOSOc 92 Subject from NDARd

1,100 LSTM (Dvornek et al., 2017) 10-fold CV 68.5

1,100 LSTM (Dvornek et al., 2018) 10-fold CV 70.1

131 ± 34 LSTM-DG (Dvornek et al., 2019) 10-fold CV 71.9 ± 9

872 Boostrap G-CNN (Anirudh and Thiagarajan, 2019) 10-fold CV 70.86

51 SVM (Kazeminejad and Sotero, 2018) 10-fold CV 95 Subjects above the age of

30

454 DNN-GAN (Yao and Lu, 2019) 5-fold CV 87.9

48 ± 27 CNN (El-Gazzar et al., 2019a) LSOSe 67 ± 5

sMRI 48.9 ± 31 Random Forest (Katuwal et al., 2015) CV10-20 79 ± 9

182 Sparse stacked autoencoders + softmax (Kong

et al., 2019)

LOOCV 90.3 NYU dataset from ABIDE

132 SVM (Zheng et al., 2019) LOOCV 78.63

276 Data expanding multi-channel CNN (Li G. et al.,

2018)

10-fold CV 76.2 Subjects from NDAR

64 SVM (Chaddad et al., 2017) 10-fold CV 67.85 Two sites (UM, Pitt) from

ABIDE dataset

650 SVM/KNN (Demirhan, 2018) 5-fold CV 52 ± 7 Subjects below 10 years

are excluded

44 SVM (Ecker et al., 2010) LOOCV 77

734 Random Forest (Katuwal et al., 2015) LOOCV 60

138 47 Projection Based Learning (PBL) (Vigneshwaran

et al., 2013)

train-test 70 NYU dataset from ABIDE-I

85 Random Forest (Xiao et al., 2017) 3-fold CV 80.9 ± 1.5

40 Projection Based Learning (PBL) (Subbaraju et al.,

2015)

5-fold CV 98.67 ± 1.7 Subjects are only adult

female

(Continued)
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TABLE 1 | Continued

Modality Train size Test size Classification method Test type Accuracy (%) Remark

78 SVM (Chen et al., 2020a) 10-fold CV 74 NYU dataset from

ABIDE-II

142 SVM (Yassin et al., 2020) 10-fold CV 89.6 36 ASD, and 106 TD

38 Logistic Model Trees (LMTs) (Jiao et al., 2010) 10-fold CV 87

fMRI +

sMRI

871 Graph Convolutional Networks (Parisot et al., 2018) 10-fold CV 70.4

800 311 SVM (Sen et al., 2018) train-test 64.3

47 DFCN (Dekhil et al., 2017) 94.7 Subjects from NDAR

185 DBN (Aghdam et al., 2018) 10-fold CV 65.56 subjects in range 5–10

from ABIDE-I/II

817 MLP (Rakić et al., 2020) 10-fold CV 85

809 Multichannel DANN (Niu et al., 2020) 10-fold CV 73.2

aAverage result of 7, 14, 21, 28, 42, and 84 fold cross validation.
bDNN with a novel feature selection method.
cLeave one subject out.
dNational Database of Autism Research.
eLeave site out cross validation.

The table gives an overview of the modalities used, training, and test size of the data, classification model, type of test used for evaluation as well as accuracy reported by the authors.

Remarks gives relevant information to put the accuracy and other results in context for fair comparisons across different studies.

or by under-sampling the larger majority class. There are several
techniques to address imbalanced datasets in sMRI/fMRI data
for ASD and ADHD classification. These include k-fold cross
validation (Qureshi and Lee, 2016; Eslami et al., 2019) (randomly
splitting the data while maintaining class distribution for k
times), re-sampling training set (Colby et al., 2012; Li X. et al.,
2018) (under-sampling or over-sampling training set to have
an even class distribution), and bootstrapping (Beare et al.,
2017; Dekhil et al., 2018a) (re-sampling the dataset randomly
with replacement to oversample the dataset). One method for
handling imbalanced data in ADHD, and ASD data sets is
SMOTE which is used to oversample the minority class (Riaz
et al., 2016; Farzi et al., 2017; Shao et al., 2019). SMOTE (Chawla
et al., 2002) is a technique to adjust the class distribution of
a data set, or to produce synthetic data for your ML model.
SMOTE technique shows that a combination of over-sampling
the minority class and under-sampling the majority class allows
machine-learning, and deep-learning methods to achieve better
classifier performance when compared with the performance of
only using under-sampling the majority class. The performance
is generally defined in the ROC space, and compared with
the loss ratios than one would get from Ripper or Naïve
Bayes. The authors have successfully used SMOTE technique
on MRI data sets for ADHD and ASD classifications machine-
learning models (Eslami and Saeed, 2018b, 2019; Eslami et al.,
2019).

7. FRONTIERS AND FUTURE DIRECTION
IN MACHINE-LEARNING FOR ASD AND
ADHD MRI DATA SETS

Rapid improvement in machine-learning techniques will allow
further breakthroughs in ADHD and ASD diagnosis that is based

on imaging techniques. Here we highlight two directions which
would be beneficial for taking forward the field of computational
diagnosis of ADHD and ASD.

7.1. Extracting More Knowledge From
Smaller Data Sets
One way to improve the performance of machine-learning and
deep-learning techniques is to feed more data to the model
to reduce overfitting and improve generalizability. However,
MRI acquisition is time consuming and costly, and does
not allow strict control of parameters needed for machine-
learning algorithmic development. One cost-effective way to
enhance generalization, increase reproducibility, and reliability
of machine-learning models is to perform data augmentation
using available training sets. Large datasets are a must-have when
it comes to training deep neural networks in order to optimize
the learning process. Data augmentation techniques (Shin et al.,
2018) can be used to generate artificial data using available
training data which is useful when data collection is costly or
not possible. Augmenting data can be done in an online or
offline fashion. In the former case, new data is generated before
the training process is started and the model is trained using
the pool of real and artificial data. This method is preferred
for small datasets. In the latter, new data is generated in each
batch feeding to the network. This method is preferred for large
datasets. Flipping, translation, cropping, adding Gaussian noise,
and blurring images are examples of popular data augmentation
methods used in computer vision area.

7.2. Establishing Fundamental Principles
for Autism and ADHD
Discovery of laws and scientific principles using machine-
learning solutions is a transformative (albiet not new) concept
in science. However, clinical scientists, mental health providers,
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TABLE 2 | Literature review of ADHD diagnosis using ML and DL methods is shown.

Modality Train size Test size Classification method Test type Accuracy (%) Remarks

fMRI 216 SVM (Du et al., 2016) 10-fold CV 94.9 Subset of ADHD-200

156 SVM based MVPAa (Fair et al., 2013) LOOCV 69.2 Subset of ADHD dataset 3

group classification

36 SVM (Iannaccone et al., 2015) LOOCV 77.7 Subjects are between

12–16 years

506 SVM (Solmaz et al., 2012) LOOCV 64 Subset of ADHD-200

769 171 SVM (Ghiassian et al., 2013) Train-test 62.5

60 Gaussian Process Classifier (Hart et al., 2014) LOOCV 77 Task based fMRI

210/193 41/51 Decision tree (Itani et al., 2018) train-test 68.3/82.4 NYU/Peking datasets

from ADHD-200

126 ± 63 28 ± 12 KNN (Eslami and Saeed, 2018b) train-test 66 ± 11

1,177 fully connected cascade (FCC) (Deshpande et al.,

2015)

LOOCV 90

135 ± 71 32 ± 15 Deep forest (Shao et al., 2019) train-test 73 ± 6 Subset of ADHD-200

128 ± 62 34 ± 16 Deep Bayesian Network (Hao et al., 2015) Train-test 58 ± 10 Subset of ADHD-200

626 162 4D CNN (Mao et al., 2019) Train-test 71.3

487 DNN-GAN (Yao and Lu, 2019) 5-fold CV 90.2

222/48 41/25 DBN (Farzi et al., 2017) Train-test 63.6/69.8 Tested on

NYU/NeuroImage from

ABIDE

621 SVM (Riaz et al., 2016) Train-test 82 Peking, KKI, NYU, and NI

datasets from ADHD-200

sMRI 111 48 Hierarchical Extreme Learning Machine (Qureshi

et al., 2016)

train-test 60.78 Subset of ADHD-200

110 Extreme Learning Machine (Peng et al., 2013) LOOCV 90.18 Subset of Peking dataset

from ADHD-200

36 SVM (Iannaccone et al., 2015) LOOCV 61.1

78 SVM (Igual et al., 2012) 5-fold CV 72.48

68 SVM (Johnston et al., 2014) LOOCV 93

436 SVM (Chang et al., 2012) 10-fold CV 69.9 Subset of ADHD-200

770 171 Tensor boosting (Zhang et al., 2017) Train-test 69

587 Dilated 3D-CNN (Wang Z. et al., 2019) 5-fold CV 76.6 Subset of ADHD-200

fMRI +

sMRI

558 171 SVM (Sen et al., 2018) 5-fold CV 68.9

776 197 SVM (Colby et al., 2012) Train-test 59

559 171 Multi-Modality 3D CNN (Zou et al., 2017) Train-test 69.15

aMultivariate Pattern Analysis. The table gives an overview of the modalities used, training, and test size of the data, classification model, type of test used for evaluation as well as

accuracy reported by the authors. Remarks gives relevant information to put the accuracy and other results in context for fair comparisons across different studies.

and physicians are reticent to adopt artificial intelligence, often
because of the lack of interpretability. Long-term vision for
computational neuroscience is to address this issue by developing
the necessary methodology to make ML and DL algorithms
more transparent and trustworthy to these providers, particularly
with respect to correctly classifying ADHD and ASD patients.
ML interpretability can be used for many purposes: build
trust, favorize acceptance, compensate unfair biases, diagnose
how to improve models, and certify learned models. More
importantly the interpretation of the models could help discover
new knowledge that might be useful for neuroscientists for
future studies (e.g., a specific neural pathway discovered for
ADHD or ASD that is not known and found in neurotypical
brains). As a result, ML and DL interpretability has become
a core national concern when applied to biomedical decision
making (see National AI R&D Strategic Plan: 2019), and
will require significant efforts and resources. Investigations

into frameworks that support knowledge discovery by using
transparent ML/DL models that will encode the known
underlying neurobiology, extract rules from neural networks,
and translate that into actual neural pathways of the human
brain would give us extraordinarily insights. Currently we are
not aware of any interpretable deep-learning model for ADHD
or ASD classifications.

7.3. Novel Methods to Integrate the
Multimodality of MRI Data Sets
Due to the sparse nature of structural connectivity, most
functional connections are not supported by an underlying
structural connection. Community detection for structural and
functional networks typically yield different solutions andmodels
that can integrate feature-vectors to produce classification
accuracy greater than both (sMRI and fMRI) models is
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challenging. One challenge is the distinct cardinality of feature
vectors from two models that needs to be integrated to boost
accuracy performance. The integration model must also be able
to distinguish between feature that are instrumental in correct
classification and reduce the effect of features which produce
adverse results. Classification of neuroimaging data from
multiple acquisition sites that have different scanner hardware,
imaging protocols, operator characteristics, and site-specific
variables makes efficient and correct integration of sMRI and
fMRI data extremely challenging. To our knowledge, only one
deep-learning technique (Zou et al., 2017) has been introduced
for integration of fMRI and sMRI data sets which gives maximum
accuracy of 69%. Provided that the neuroimaging markers
identified from integration of sMRI/fMRI data must be reliable
across imaging sites to be clinically useful. Since deep-learning
is especially useful in identifying complex patterns in high-
dimensional fMRI data; integrated methods that can deal with
high dimensional sMRI/fMRI data, if designed correctly, must
lead to high accuracy and more formal investigated is warranted.
We are not aware of a deep-learning model that allows such
integration that provides higher accuracy comparing to current
state-of-the-art fMRI/sMRI based methods.

7.4. High Performance Computing
Strategies
Current machine-learning (especially deep-learning) approaches
are too slow and thus detracting from making appropriate gains
in classification of psychiatric biomarkers. Recent proliferation
of “big data” and increased calls for data sharing particularly with
fMRI data will necessitate novel approaches that have the ability
to quickly and efficiently analyze this data to identify appropriate
biomarkers of ADHD and ASD.

Carefully crafted parallel algorithms that take into account
the CPU-GPU or CPU-Accelerator architecture are critical
for scalable solutions for multidimensional fMRI data. Future
HPC strategies would requires two components for scalable
frameworks: (1) parallel processing of MRI data and (2) parallel
processing of deep-learning networks that are associated with
ASD and ADHD diagnosis. Although rarely employed till date,
few HPC methods specific to MRI data analysis has been
proposed (Eslami et al., 2017; Tahmassebi et al., 2017; Eslami and
Saeed, 2018a; Lusher et al., 2018).

8. DISCUSSION

Despite being at the early stages, Machine-Learning (ML), and
Deep-Learning (DL) methods have shown promising results
in diagnosing ADHD and ASD in most cases. DL models
are overtaking traditional models for feature extraction and
classification. Although DL can provide accurate decisions, there
are several challenges that need to be considered while using
it. DL methods were not specifically designed for neuroimaging
data which usually contains a small number of samples and
many features leading to overfitting (Jollans et al., 2019).
Avoiding overfitting has become the focus of recent studies
that use solutions, such as dropout, regularization, and data

augmentation. Another issue with DL methods is the lack of
transparency and insight which makes them known as black
boxes. Even though the structure of the network is explainable,
they are not able to answer the questions like why the set of
provided features used in the training provides the network
predictions, or what makes one model superior to another one.
Interpretability is an important factor for trusting such models,
which is a necessity for understanding brain abnormalities and
differences between controls and patients. This aspect is missing
from most of the designed architectures and is an area that
needs more focus and attention. Finally, integration of research
findings from the ML and DL literature as well as adoption of
the use of such approaches in combination with neuroimaging
data by practitioners in everyday clinical practice are likely to
be met with some resistance given the limitations noted above
among others. For example, neuroimaging is costly and involves
substantial time commitments by multiple individuals (e.g., MRI
technicians, physicians, patients) that are currently not involved
typically in the diagnosis of ADHD or ASD. As a result, the
extent to which data collected via neuroimaging is likely to aid
clinicians in practice will depend largely upon whether machine
learning algorithms applied to such data are more optimal at
classifying those with and without the disorder relative to more
traditional methods (e.g., rating scales, interviews) requiring
fewer resources (e.g., shorter time duration, more cost effective),
and are explainable.

One aspect that directly affects the accuracy of the model is the
distribution of the training data which should be representative
of the unseen data. Public brain imaging datasets, such as
ADHD-200 and ABIDE gathered the data from several brain
imaging centers in different geographical locations in which
different scanners, scanning settings, and protocols are used for
generating images. These differences can affect the distribution
of the data and deteriorate the ability of the model to perform
correct predictions for other samples. This aspect is mostly
overlooked in analyzing the performance of the proposed models
which may focus on a subset of these benchmarking datasets
such that performance of the model on other datasets is
unclear. To reflect the realistic performance of an ML model
in diagnosing brain disorders, these models must be tested
on multiple datasets to guarantee generalizability. Using the
same validation process among different studies also ensures
the fairground for comparisons and reproducible benchmarking.
The reproducibility of ML methods is another important
concept that should be considered. Designing an ML/DL model
consists of many details about the hyperparameters and training
process, such as number of layers, number of nodes in each
layer, number of iterations, hyperparameter tuning methods,
regularization methods used for avoiding overfitting, types
of activation functions, types of loss functions, etc. Unless
making the implementation of the model available to the
public, or providing all the details used for implementation,
reconstructing the same model and getting the same result
is not possible. Sharing the implementation of the model
along with proper guidelines for using it makes the process of
reproducing the results a better experience for other researchers.
The scientific codes for these methods should be re-runnable,
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repeatable, reproducible, reusable and replicable (Benureau and
Rougier, 2018). Recently proposed schemes, such as—the Brain
Imaging Data Structure (BIDS) (Gorgolewski et al., 2016)—will
standardize data organization, storing, and curation processes
which will streamline reliability and reproducibility of the
machine-learning, and deep-learning models.

There is still room for improving the current research studies
to provide a better diagnostic experience. One issue that is
overlooked by most research studies is the running time needed
for training the predictive models. As mentioned earlier, ML
and DL methods are not originally designed for brain imaging
data. For example, CNNmodel is initially designed for classifying
2D images, however, in MRI and fMRI we are dealing with 3D
and 4D data. Extending the original CNN architecture from 2D
to 3D and 4D increases the number of parameters and overall
running time. The long running time could be a hurdle for a tool
assisting in medical diagnosis and high-performance computing
algorithms could be vital to make these ML model mainstream.
fMRI and sMRI features are mostly considered individually as
predictors to ML models, while their combination can provide
a richer source of information. Using the fusion of sMRI and
fMRI data, particularly when combined with other information
(e.g., demographic characteristics) could be a potential way to

further improve the predictability and interpretability of the ML
models. There is room for improving the quality of predictive
models by employing data augmentation and transfer learning
methods. The success of these methodologies in other fields, such

as computer vision encourages incorporating them in designing
predictive models for diagnosing brain disorders.

AUTHOR CONTRIBUTIONS

TE and FS conceived and designed the study. TE did the
implementation of the code and results. TE, FA, JR, and FS
interpreted the results and wrote the manuscript. FA and FS read
and synthesized sMRI knowledge specific to ASD and ADHD
classification, and interpreted the results. All authors contributed
to the article and approved the submitted version.

FUNDING

Research reported in this paper was partially supported by
NIGMS of the National Institutes of Health (NIH) under
award number R01GM134384. The content was solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health. FS
was additionally supported by the NSF CAREER award
OAC 1925960.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2020.575999/full#supplementary-material

REFERENCES

Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras, D.,

Thirion, B., et al. (2017). Deriving reproducible biomarkers from multi-

site resting-state data: an autism-based example. Neuroimage 147, 736–745.

doi: 10.1016/j.neuroimage.2016.10.045

Aghdam, M. A., Sharifi, A., and Pedram, M. M. (2018). Combination of

rs-fMRI and sMRI data to discriminate autism spectrum disorders in

young children using deep belief network. J. Digit. Imaging 31, 895–903.

doi: 10.1007/s10278-018-0093-8

Ahmed, M. R., Zhang, Y., Feng, Z., Lo, B., Inan, O. T., and Liao, H.

(2018). Neuroimaging and machine learning for dementia diagnosis: recent

advancements and future prospects. IEEE Rev. Biomed. Eng. 12, 19–33.

doi: 10.1590/2446-4740.08117

Alpaydin, E. (2016).Machine Learning: The New AI. Cambridge, MA: MIT Press.

American Psychiatric Association (2013). Diagnostic and Statistical Manual of

Mental Disorders (DSM-5 R©). Washington, DC: American Psychiatric Pub.

Anirudh, R., and Thiagarajan, J. J. (2019). “Bootstrapping graph convolutional

neural networks for autism spectrum disorder classification,” in ICASSP 2019-

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (Brighton: IEEE), 3197–3201. doi: 10.1109/ICASSP.2019.8683547

Bauer, S., Wiest, R., Nolte, L.-P., and Reyes, M. (2013). A survey of MRI-based

medical image analysis for brain tumor studies. Phys. Med. Biol. 58:R97.

doi: 10.1088/0031-9155/58/13/R97

Beare, R., Adamson, C., Bellgrove, M. A., Vilgis, V., Vance, A., Seal, M. L., et al.

(2017). Altered structural connectivity in ADHD: a network based analysis.

Brain Imaging Behav. 11, 846–858. doi: 10.1007/s11682-016-9559-9

Benureau, F. C., and Rougier, N. P. (2018). Re-run, repeat, reproduce, reuse,

replicate: transforming code into scientific contributions. Front. Neuroinform.

11:69. doi: 10.3389/fninf.2017.00069

Bi, X.-a., Liu, Y., Jiang, Q., Shu, Q., Sun, Q., and Dai, J. (2018). The diagnosis of

autism spectrum disorder based on the random neural network cluster. Front.

Hum. Neurosci. 12:257. doi: 10.3389/fnhum.2018.00257

Bind, S., Tiwari, A. K., Sahani, A. K., Koulibaly, P., Nobili, F., Pagani, M., et al.

(2015). A survey of machine learning based approaches for parkinson disease

prediction. Int. J. Comput. Sci. Inform. Technol. 6, 1648–1655.

Bosl, W. J., Tager-Flusberg, H., and Nelson, C. A. (2018). Eeg analytics for early

detection of autism spectrum disorder: a data-driven approach. Sci. Rep. 8:6828.

doi: 10.1038/s41598-018-24318-x

Bottou, L. (2012). “Stochastic gradient descent tricks,” in Neural Networks: Tricks

of the Trade, eds G. Montavon, G. B. Orr, and K. R. Müller (Berlin; Heidelberg:

Springer), 421–436. doi: 10.1007/978-3-642-35289-8_25

Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D.

M., Benzinger, T. L., et al. (2014). Functional connectivity and graph

theory in preclinical Alzheimer’s disease. Neurobiol. Aging 35, 757–768.

doi: 10.1016/j.neurobiolaging.2013.10.081

Brown, C. J., Kawahara, J., and Hamarneh, G. (2018). “Connectome priors in

deep neural networks to predict autism,” in 2018 IEEE 15th International

Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC: IEEE),

110–113. doi: 10.1109/ISBI.2018.8363534

Brown, M. R., Sidhu, G. S., Greiner, R., Asgarian, N., Bastani, M., Silverstone, P.

H., et al. (2012). Adhd-200 global competition: diagnosing adhd using personal

characteristic data can outperform resting state fmri measurements. Front. Syst.

Neurosci. 6:69. doi: 10.3389/fnsys.2012.00069

Bruchmüller, K., Margraf, J., and Schneider, S. (2012). Is ADHD diagnosed in

accord with diagnostic criteria? Overdiagnosis and influence of client gender

on diagnosis. J. Consult. Clin. Psychol. 80:128. doi: 10.1037/a0026582

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A

method for making group inferences from functional MRI data using

independent component analysis.Hum. BrainMapp. 14, 140–151. doi: 10.1002/

hbm.1048

Caruana, R., and Niculescu-Mizil, A. (2006). “An empirical

comparison of supervised learning algorithms,” in

Proceedings of the 23rd International Conference on Machine

Learning (Pittsburgh, PA) 161–168. doi: 10.1145/1143844.

1143865

Frontiers in Neuroinformatics | www.frontiersin.org 15 January 2021 | Volume 14 | Article 575999

https://www.frontiersin.org/articles/10.3389/fninf.2020.575999/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.1007/s10278-018-0093-8
https://doi.org/10.1590/2446-4740.08117
https://doi.org/10.1109/ICASSP.2019.8683547
https://doi.org/10.1088/0031-9155/58/13/R97
https://doi.org/10.1007/s11682-016-9559-9
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fnhum.2018.00257
https://doi.org/10.1038/s41598-018-24318-x
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1016/j.neurobiolaging.2013.10.081
https://doi.org/10.1109/ISBI.2018.8363534
https://doi.org/10.3389/fnsys.2012.00069
https://doi.org/10.1037/a0026582
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1145/1143844.1143865
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. Survey on ML Models for ADHD and ASD

Castellanos, F. X., and Aoki, Y. (2016). Intrinsic functional connectivity

in attention-deficit/hyperactivity disorder: a science in development. Biol.

Psychiatry 1, 253–261. doi: 10.1016/j.bpsc.2016.03.004

Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D., and Milham, M.

P. (2013). Clinical applications of the functional connectome. Neuroimage 80,

527–540. doi: 10.1016/j.neuroimage.2013.04.083

Chaddad, A., Desrosiers, C., Hassan, L., and Tanougast, C. (2017). Hippocampus

and amygdala radiomic biomarkers for the study of autism spectrum disorder.

BMC Neurosci. 18:52. doi: 10.1186/s12868-017-0373-0

Chang, C.-W., Ho, C.-C., and Chen, J.-H. (2012). Adhd classification by a

texture analysis of anatomical brain mri data. Front. Syst. Neurosci. 6:66.

doi: 10.3389/fnsys.2012.00066

Chapelle, O., Scholkopf, B., and Zien, A. (2009). Semi-supervised learning

(chapelle, O. et al., Eds.; 2006)[book reviews]. IEEE Trans. Neural Netw. 20,

542–542. doi: 10.1109/TNN.2009.2015974

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:

synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.

doi: 10.1613/jair.953

Chen, C. P., Keown, C. L., Jahedi, A., Nair, A., Pflieger, M. E., Bailey, B. A., et al.

(2015). Diagnostic classification of intrinsic functional connectivity highlights

somatosensory, default mode, and visual regions in autism. Neuroimage Clin.

8, 238–245. doi: 10.1016/j.nicl.2015.04.002

Chen, H., Duan, X., Liu, F., Lu, F., Ma, X., Zhang, Y., et al. (2016). Multivariate

classification of autism spectrum disorder using frequency-specific resting-state

functional connectivity—a multi-center study. Prog. Neuropsychopharmacol.

Biol. Psychiatry 64, 1–9. doi: 10.1016/j.pnpbp.2015.06.014

Chen, T., Chen, Y., Yuan, M., Gerstein, M., Li, T., Liang, H., et al. (2020a).

The development of a practical artificial intelligence tool for diagnosing and

evaluating autism spectrum disorder: multicenter study. JMIR Med. Inform.

8:e15767. doi: 10.2196/15767

Chen, Y., Cui, Q., Xie, A., Pang, Y., Sheng, W., Tang, Q., et al. (2020b). Abnormal

dynamic functional connectivity density in patients with generalized anxiety

disorder. J. Affect. Disord. 261, 49–57. doi: 10.1016/j.jad.2019.09.084

Colby, J. B., Rudie, J. D., Brown, J. A., Douglas, P. K., Cohen, M. S., and Shehzad,

Z. (2012). Insights into multimodal imaging classification of adhd. Front. Syst.

Neurosci. 6:59. doi: 10.3389/fnsys.2012.00059

Dai, D., Wang, J., Hua, J., and He, H. (2012). Classification of adhd children

through multimodal magnetic resonance imaging. Front. Syst. Neurosci. 6:63.

doi: 10.3389/fnsys.2012.00063

Danielson, M. L., Bitsko, R. H., Ghandour, R. M., Holbrook, J. R., Kogan, M. D.,

and Blumberg, S. J. (2018). Prevalence of parent-reported adhd diagnosis and

associated treatment among us children and adolescents 2016. J. Clin. Child

Adolesc. Psychol. 47, 199–212. doi: 10.1080/15374416.2017.1417860

Dekhil, O., Ali, M., Shalaby, A., Mahmoud, A., Switala, A., Ghazal, M., et al.

(2018a). “Identifying personalized autism related impairments using resting

functional mri and ados reports,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (Granada: Springer), 240–248.

doi: 10.1007/978-3-030-00931-1_28

Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., et al.

(2018b). Using resting state functional MRI to build a personalized autism

diagnosis system. PLoS ONE 13:e0206351. doi: 10.1371/journal.pone.0206351

Dekhil, O., Ismail, M., Shalaby, A., Switala, A., Elmaghraby, A., Keynton,

R., et al. (2017). “A novel cad system for autism diagnosis using

structural and functional MRI,” in 2017 IEEE 14th International Symposium

on Biomedical Imaging (ISBI 2017) (Melbourne, VIC: IEEE), 995–998.

doi: 10.1109/ISBI.2017.7950683

Demirhan, A. (2018). The effect of feature selection on multivariate

pattern analysis of structural brain MR images. Phys. Med. 47, 103–111.

doi: 10.1016/j.ejmp.2018.03.002

Deshpande, G., Wang, P., Rangaprakash, D., and Wilamowski, B. (2015).

Fully connected cascade artificial neural network architecture for

attention deficit hyperactivity disorder classification from functional

magnetic resonance imaging data. IEEE Trans. Cybern. 45, 2668–2679.

doi: 10.1109/TCYB.2014.2379621

dos Santos Siqueira, A., Junior, B., Eduardo, C., Comfort, W. E., Rohde, L. A.,

and Sato, J. R. (2014). Abnormal functional resting-state networks in ADHD:

graph theory and pattern recognition analysis of fMRI data. BioMed Res. Int.

2014:380531. doi: 10.1155/2014/380531

Du, J., Wang, L., Jie, B., and Zhang, D. (2016). Network-based classification

of ADHD patients using discriminative subnetwork selection and

graph kernel PCA. Comput. Med. Imaging Graph. 52, 82–88.

doi: 10.1016/j.compmedimag.2016.04.004

Duchesnay, E., Cachia, A., Boddaert, N., Chabane, N., Mangin, J.-F., Martinot,

J.-L., et al. (2011). Feature selection and classification of imbalanced datasets:

application to pet images of children with autistic spectrum disorders.

Neuroimage 57, 1003–1014. doi: 10.1016/j.neuroimage.2011.05.011

Dvornek, N. C., Li, X., Zhuang, J., and Duncan, J. S. (2019). “Jointly discriminative

and generative recurrent neural networks for learning from fMRI,” in

International Workshop on Machine Learning in Medical Imaging (Shenzhen:

Springer), 382–390. doi: 10.1007/978-3-030-32692-0_44

Dvornek, N. C., Ventola, P., and Duncan, J. S. (2018). “Combining phenotypic

and resting-state fMRI data for autism classification with recurrent neural

networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging

(ISBI 2018) (Washington, DC: IEEE), 725–728. doi: 10.1109/ISBI.2018.8363676

Dvornek, N. C., Ventola, P., Pelphrey, K. A., and Duncan, J. S. (2017). “Identifying

autism from resting-state fMRI using long short-term memory networks,” in

InternationalWorkshop onMachine Learning inMedical Imaging (Quebec City,

QC: Springer), 362–370. doi: 10.1007/978-3-319-67389-9_42

Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly,

E. M., et al. (2010). Investigating the predictive value of whole-brain structural

mr scans in autism: a pattern classification approach. Neuroimage 49, 44–56.

doi: 10.1016/j.neuroimage.2009.08.024

El Gazzar, A., Cerliani, L., van Wingen, G., and Thomas, R. M. (2019a). “Simple 1-

D convolutional networks for resting-state fMRI based classification in autism,”

in 2019 International Joint Conference on Neural Networks (IJCNN) (Budapest:

IEEE), 1–6. doi: 10.1109/IJCNN.2019.8852002

El Gazzar, A., Quaak, M., Cerliani, L., Bloem, P., van Wingen, G., and Thomas,

R. M. (2019b). “A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-

temporal fMRI data: an abide autism classification study,” in OR 2.0 Context-

Aware Operating Theaters and Machine Learning in Clinical Neuroimaging

(Shenzhen: Springer), 95–102. doi: 10.1007/978-3-030-32695-1_11

Elkes, A., and Thorpe, J. G. (1967). A Summary of Psychiatry. London: Faber &

Faber.

Epstein, J. N., Kelleher, K. J., Baum, R., Brinkman, W. B., Peugh, J., Gardner, W.,

et al. (2014). Variability in adhd care in community-based pediatrics. Pediatrics

134, 1136–1143. doi: 10.1542/peds.2014-1500

Eslami, T., Awan, M. G., and Saeed, F. (2017). “GPU-PCC: a GPU based technique

to compute pairwise Pearson’s correlation coefficients for big fMRI data,”

in Proceedings of the 8th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics (Boston, MA), 723–728.

doi: 10.1145/3107411.3108173

Eslami, T., Mirjalili, V., Fong, A., Laird, A., and Saeed, F. (2019). ASD-diagnet: a

hybrid learning approach for detection of autism spectrum disorder using fMRI

data. arXiv[Preprint].arXiv: 1904.07577. doi: 10.3389/fninf.2019.00070

Eslami, T., and Saeed, F. (2018a). Fast-GPU-PCC: a GPU-based technique to

compute pairwise Pearson’s correlation coefficients for time series data—fMRI

study. Highthroughput 7:11. doi: 10.3390/ht7020011

Eslami, T., and Saeed, F. (2018b). “Similarity based classification of

ADHD using singular value decomposition,” in Proceedings of the 15th

ACM International Conference on Computing Frontiers (Ischia), 19–25.

doi: 10.1145/3203217.3203239

Eslami, T., and Saeed, F. (2019). “Auto-ASD-network: a technique based on deep

learning and support vector machines for diagnosing autism spectrum disorder

using fMRI data,” in Proceedings of the 10th ACM International Conference on

Bioinformatics, Computational Biology and Health Informatics (Niagara Falls,

NY), 646–651. doi: 10.1145/3307339.3343482

Fair, D., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U., et al. (2013).

Distinct neural signatures detected for ADHD subtypes after controlling for

micro-movements in resting state functional connectivityMRI data. Front. Syst.

Neurosci. 6:80. doi: 10.3389/fnsys.2012.00080

Fair, D. A., Bathula, D., Nikolas, M. A., and Nigg, J. T. (2012). Distinct

neuropsychological subgroups in typically developing youth inform

heterogeneity in children with ADHD. Proc. Natl. Acad. Sci. U.S.A. 109,

6769–6774. doi: 10.1073/pnas.1115365109

Faraone, S. V., Newcorn, J. H., Antshel, K. M., Adler, L., Roots, K., and

Heller, M. (2016). The groundskeeper gaming platform as a diagnostic

Frontiers in Neuroinformatics | www.frontiersin.org 16 January 2021 | Volume 14 | Article 575999

https://doi.org/10.1016/j.bpsc.2016.03.004
https://doi.org/10.1016/j.neuroimage.2013.04.083
https://doi.org/10.1186/s12868-017-0373-0
https://doi.org/10.3389/fnsys.2012.00066
https://doi.org/10.1109/TNN.2009.2015974
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.nicl.2015.04.002
https://doi.org/10.1016/j.pnpbp.2015.06.014
https://doi.org/10.2196/15767
https://doi.org/10.1016/j.jad.2019.09.084
https://doi.org/10.3389/fnsys.2012.00059
https://doi.org/10.3389/fnsys.2012.00063
https://doi.org/10.1080/15374416.2017.1417860
https://doi.org/10.1007/978-3-030-00931-1_28
https://doi.org/10.1371/journal.pone.0206351
https://doi.org/10.1109/ISBI.2017.7950683
https://doi.org/10.1016/j.ejmp.2018.03.002
https://doi.org/10.1109/TCYB.2014.2379621
https://doi.org/10.1155/2014/380531
https://doi.org/10.1016/j.compmedimag.2016.04.004
https://doi.org/10.1016/j.neuroimage.2011.05.011
https://doi.org/10.1007/978-3-030-32692-0_44
https://doi.org/10.1109/ISBI.2018.8363676
https://doi.org/10.1007/978-3-319-67389-9_42
https://doi.org/10.1016/j.neuroimage.2009.08.024
https://doi.org/10.1109/IJCNN.2019.8852002
https://doi.org/10.1007/978-3-030-32695-1_11
https://doi.org/10.1542/peds.2014-1500
https://doi.org/10.1145/3107411.3108173
https://doi.org/10.3389/fninf.2019.00070
https://doi.org/10.3390/ht7020011
https://doi.org/10.1145/3203217.3203239
https://doi.org/10.1145/3307339.3343482
https://doi.org/10.3389/fnsys.2012.00080
https://doi.org/10.1073/pnas.1115365109
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. Survey on ML Models for ADHD and ASD

tool for attention-deficit/hyperactivity disorder: sensitivity, specificity, and

relation to other measures. J. Child Adolesc. Psychopharmacol. 26, 672–685.

doi: 10.1089/cap.2015.0174

Farzi, S., Kianian, S., and Rastkhadive, I. (2017). “Diagnosis of attention deficit

hyperactivity disorder using deep belief network based on greedy approach,” in

2017 5th International Symposium on Computational and Business Intelligence

(ISCBI) (Dubai: IEEE), 96–99. doi: 10.1109/ISCBI.2017.8053552

Fischl, B. (2012). Freesurfer. Neuroimage 62, 774–781.

doi: 10.1016/j.neuroimage.2012.01.021

Gao, S., Calhoun, V. D., and Sui, J. (2018). Machine learning in major depression:

from classification to treatment outcome prediction. CNS Neurosci. Therap. 24,

1037–1052. doi: 10.1111/cns.13048

Gardner, M. W., and Dorling, S. (1998). Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences. Atmos.

Environ. 32, 2627–2636. doi: 10.1016/S1352-2310(97)00447-0

Ghiassian, S., Greiner, R., Jin, P., and Brown, M. (2013). “Learning to classify

psychiatric disorders based on fmr images: autism vs healthy and ADHD

vs healthy,” in Proceedings of 3rd NIPS Workshop on Machine Learning and

Interpretation in NeuroImaging.

Ghiassian, S., Greiner, R., Jin, P., and Brown, M. R. (2016). Using

functional or structural magnetic resonance images and personal

characteristic data to identify adhd and autism. PLoS ONE 11:e0166934.

doi: 10.1371/journal.pone.0166934

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (Sardinia), 249–256.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016).Deep Learning, Vol.

1. Cambridge, MA: MIT Press.

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E.

P., et al. (2016). The brain imaging data structure, a format for organizing

and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9.

doi: 10.1038/sdata.2016.44

Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., and Lu, L. J. (2017).

Diagnosing autism spectrum disorder from brain resting-state functional

connectivity patterns using a deep neural network with a novel feature selection

method. Front. Neurosci. 11:460. doi: 10.3389/fnins.2017.00460

Hao, A. J., He, B. L., and Yin, C. H. (2015). “Discrimination of ADHD children

based on Deep Bayesian Network,” in 2015 IET International Conference

on Biomedical Image and Signal Processing (ICBISP 2015) (Beijing), 1–6.

doi: 10.1049/cp.2015.0764

Hart, H., Chantiluke, K., Cubillo, A. I., Smith, A. B., Simmons, A., Brammer, M.

J., et al. (2014). Pattern classification of response inhibition in ADHD: toward

the development of neurobiological markers for ADHD.Hum. Brain Mapp. 35,

3083–3094. doi: 10.1002/hbm.22386

Hecht-Nielsen (1989). “Theory of the backpropagation neural network,” in

International 1989 Joint Conference on Neural Networks, Vol. 1, 593–605.

doi: 10.1109/IJCNN.1989.118638

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., and Meneguzzi, F.

(2018). Identification of autism spectrum disorder using deep learning and the

abide dataset. Neuroimage Clin. 17, 16–23. doi: 10.1016/j.nicl.2017.08.017

Hinton, G. E., Sejnowski, T. J., Poggio, T. A., et al. (1999). Unsupervised Learning:

Foundations of Neural Computation. Cambridge, MA: MIT Press.

Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward

networks are universal approximators. Neural Netw. 2, 359–366.

doi: 10.1016/0893-6080(89)90020-8

Huang, G.-B., and Babri, H. A. (1998). Upper bounds on the number of hidden

neurons in feedforward networks with arbitrary bounded nonlinear activation

functions. IEEE Trans. Neural Netw. 9, 224–229. doi: 10.1109/72.655045

Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon,

D. R., et al. (2019). Applications of supervised machine learning in autism

spectrum disorder research: a review. Rev. J. Autism Dev. Disord. 6, 128–146.

doi: 10.1007/s40489-019-00158-x

Iannaccone, R., Hauser, T. U., Ball, J., Brandeis, D., Walitza, S., and Brem, S.

(2015). Classifying adolescent attention-deficit/hyperactivity disorder (ADHD)

based on functional and structural imaging. Eur. Child Adolesc. Psychiatry 24,

1279–1289. doi: 10.1007/s00787-015-0678-4

Igual, L., Soliva, J. C., Escalera, S., Gimeno, R., Vilarroya, O., and Radeva, P. (2012).

Automatic brain caudate nuclei segmentation and classification in diagnostic

of attention-deficit/hyperactivity disorder. Computer. Med. Imaging Graph. 36,

591–600. doi: 10.1016/j.compmedimag.2012.08.002

Iidaka, T. (2015). Resting state functional magnetic resonance imaging

and neural network classified autism and control. Cortex 63, 55–67.

doi: 10.1016/j.cortex.2014.08.011

Inoue, K., Nadaoka, T., Oiji, A., Morioka, Y., Totsuka, S., Kanbayashi, Y.,

et al. (1998). Clinical evaluation of attention-deficit hyperactivity disorder

by objective quantitative measures. Child Psychiatry Hum. Dev. 28, 179–188.

doi: 10.1023/A:1022885827086

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv[Preprint].arXiv:1502.03167.

Itani, S., Lecron, F., and Fortemps, P. (2018). Amulti-level classification framework

for multi-site medical data: application to the ADHD-200 collection. Expert

Syst. Appl. 91, 36–45. doi: 10.1016/j.eswa.2017.08.044

Itani, S., Rossignol, M., Lecron, F., and Fortemps, P. (2019). Towards

interpretable machine learning models for diagnosis aid: a case study

on attention deficit/hyperactivity disorder. PLoS ONE 14:e0215720.

doi: 10.1371/journal.pone.0215720

Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y.,

and Melie-García, L. (2008). Studying the human brain anatomical network

via diffusion-weighted MRI and graph theory. Neuroimage 40, 1064–1076.

doi: 10.1016/j.neuroimage.2007.10.060

Jaiswal, S., Valstar, M. F., Gillott, A., and Daley, D. (2017). “Automatic detection of

ADHD and ASD from expressive behaviour in RGBD data,” in 2017 12th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2017)

(Washington, DC: IEEE), 762–769. doi: 10.1109/FG.2017.95

Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., and Herskovits, E. H. (2010). Predictive

models of autism spectrum disorder based on brain regional cortical thickness.

Neuroimage 50, 589–599. doi: 10.1016/j.neuroimage.2009.12.047

Johnston, B. A., Mwangi, B., Matthews, K., Coghill, D., Konrad, K., and Steele, J.

D. (2014). Brainstem abnormalities in attention deficit hyperactivity disorder

support high accuracy individual diagnostic classification. Hum. Brain Mapp.

35, 5179–5189. doi: 10.1002/hbm.22542

Jollans, L., Boyle, R., Artiges, E., Banaschewski, T., Desrivières, S.,

Grigis, A., et al. (2019). Quantifying performance of machine

learning methods for neuroimaging data. Neuroimage 199, 351–365.

doi: 10.1016/j.neuroimage.2019.05.082

Kaboodvand, N., Iravani, B., and Fransson, P. (2020). Dynamic synergetic

configurations of resting-state networks in adhd. Neuroimage 207:116347.

doi: 10.1016/j.neuroimage.2019.116347

Karalunas, S. L., Fair, D., Musser, E. D., Aykes, K., Iyer, S. P., and Nigg, J. T.

(2014). Subtyping attention-deficit/hyperactivity disorder using temperament

dimensions: toward biologically based nosologic criteria. JAMA Psychiatry 71,

1015–1024. doi: 10.1001/jamapsychiatry.2014.763

Katuwal, G. J., Cahill, N. D., Baum, S. A., and Michael, A. M. (2015). “The

predictive power of structural MRI in autism diagnosis,” in 2015 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (Milan: IEEE), 4270–4273. doi: 10.1109/EMBC.2015.7319338

Kazeminejad, A., and Sotero, R. C. (2018). Topological properties of

resting-state fMRI functional networks improves machine learning-based

autism classification. Front. Neurosci. 12:1018. doi: 10.3389/fnins.2018.

01018

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2015). Identifying

patients with Alzheimer’s disease using resting-state fMRI and graph theory.

Clin. Neurophysiol. 126, 2132–2141. doi: 10.1016/j.clinph.2015.02.060

Khosla, M., Jamison, K., Kuceyeski, A., and Sabuncu, M. (2018). 3D convolutional

neural networks for classification of functional connectomes. arXiv 1806.04209.

Khundrakpam, B. S., Lewis, J. D., Jeon, S., Kostopoulos, P., Itturia Medina,

Y., Chouinard-Decorte, F., et al. (2019). Exploring individual brain

variability during development based on patterns of maturational coupling

of cortical thickness: a longitudinal mri study. Cereb. Cortex 29, 178–188.

doi: 10.1093/cercor/bhx317

Kinany, N., Pirondini, E., Micera, S., and Van De Ville, D. (2020).

Dynamic functional connectivity of resting-state spinal cord fMRI

reveals fine-grained intrinsic architecture. Neuron 108, 424–435.e4.

doi: 10.1016/j.neuron.2020.07.024

Kogan, M. D., Blumberg, S. J., Schieve, L. A., Boyle, C. A., Perrin, J. M.,

Ghandour, R. M., et al. (2009). Prevalence of parent-reported diagnosis of

Frontiers in Neuroinformatics | www.frontiersin.org 17 January 2021 | Volume 14 | Article 575999

https://doi.org/10.1089/cap.2015.0174
https://doi.org/10.1109/ISCBI.2017.8053552
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1111/cns.13048
https://doi.org/10.1016/S1352-2310(97)00447-0
https://doi.org/10.1371/journal.pone.0166934
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.3389/fnins.2017.00460
https://doi.org/10.1049/cp.2015.0764
https://doi.org/10.1002/hbm.22386
https://doi.org/10.1109/IJCNN.1989.118638
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/72.655045
https://doi.org/10.1007/s40489-019-00158-x
https://doi.org/10.1007/s00787-015-0678-4
https://doi.org/10.1016/j.compmedimag.2012.08.002
https://doi.org/10.1016/j.cortex.2014.08.011
https://doi.org/10.1023/A:1022885827086
https://doi.org/10.1016/j.eswa.2017.08.044
https://doi.org/10.1371/journal.pone.0215720
https://doi.org/10.1016/j.neuroimage.2007.10.060
https://doi.org/10.1109/FG.2017.95
https://doi.org/10.1016/j.neuroimage.2009.12.047
https://doi.org/10.1002/hbm.22542
https://doi.org/10.1016/j.neuroimage.2019.05.082
https://doi.org/10.1016/j.neuroimage.2019.116347
https://doi.org/10.1001/jamapsychiatry.2014.763
https://doi.org/10.1109/EMBC.2015.7319338
https://doi.org/10.3389/fnins.2018.01018
https://doi.org/10.1016/j.clinph.2015.02.060
https://doi.org/10.1093/cercor/bhx317
https://doi.org/10.1016/j.neuron.2020.07.024
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. Survey on ML Models for ADHD and ASD

autism spectrum disorder among children in the US 2007. Pediatrics 124,

1395–1403. doi: 10.1542/peds.2009-1522

Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., and Liu, J. (2019). Classification

of autism spectrum disorder by combining brain connectivity

and deep neural network classifier. Neurocomputing 324, 63–68.

doi: 10.1016/j.neucom.2018.04.080

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification

with deep convolutional neural networks. Commun. ACM 60, 84–90.

doi: 10.1145/3065386

Kuang, D., Guo, X., An, X., Zhao, Y., and He, L. (2014). “Discrimination

of adhd based on fMRI data with deep belief network,” in International

Conference on Intelligent Computing (Taiyuan: Springer), 225–232.

doi: 10.1007/978-3-319-09330-7_27

Kuang, D., and He, L. (2014). “Classification on ADHD with deep learning,” in

2014 International Conference on Cloud Computing and Big Data (Wuhan:

IEEE), 27–32. doi: 10.1109/CCBD.2014.42

Laffey, P. (2003). Psychiatric therapy in georgian britain. Psychol. Med. 33,

1285–1297. doi: 10.1017/S0033291703008109

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Lee, T.-W., and Xue, S.-W. (2017). Linking graph features of anatomical

architecture to regional brain activity: a multi-modal mri study. Neurosci. Lett.

651, 123–127. doi: 10.1016/j.neulet.2017.05.005

Li, G., Liu, M., Sun, Q., Shen, D., and Wang, L. (2018). “Early diagnosis

of autism disease by multi-channel CNNs,” in International Workshop

on Machine Learning in Medical Imaging (Granada: Springer), 303–309.

doi: 10.1007/978-3-030-00919-9_35

Li, H., Parikh, N. A., and He, L. (2018). A novel transfer learning approach to

enhance deep neural network classification of brain functional connectomes.

Front. Neurosci. 12:491. doi: 10.3389/fnins.2018.00491

Li, X., Dvornek, N. C., Zhuang, J., Ventola, P., and Duncan, J. S. (2018).

“Brain biomarker interpretation in ASD using deep learning and

fMRI,” in International Conference on Medical Image Computing

and Computer-Assisted Intervention (Granada: Springer), 206–214.

doi: 10.1007/978-3-030-00931-1_24

Linden, D. E. (2012). The challenges and promise of neuroimaging in psychiatry.

Neuron 73, 8–22. doi: 10.1016/j.neuron.2011.12.014

Liu, M., Wang, Y., Zhang, A., Yang, C., Liu, P., Wang, J., et al. (2020). Altered

dynamic functional connectivity across mood states in bipolar disorder. Brain

Res. 1750:147143. doi: 10.1016/j.brainres.2020.147143

Liu, W., Li, M., and Yi, L. (2016). Identifying children with autism

spectrum disorder based on their face processing abnormality: a

machine learning framework. Autism Res. 9, 888–898. doi: 10.1002/au

r.1615

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neurophysiological investigation of the basis of the fMRI signal. Nature 412,

150–157. doi: 10.1038/35084005

Lusher, J., Ji, J., and Orr, J. (2018). High-performance correlation and mapping

engine for rapid generating brain connectivity networks from big fMRI data. J.

Comput. Sci. 26, 157–164. doi: 10.1016/j.jocs.2018.04.013

Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo,

M., et al. (2020). Prevalence of autism spectrum disorder among

children aged 8 years - autism and developmental disabilities monitoring

network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12.

doi: 10.15585/mmwr.ss6904a1

Mao, Z., Su, Y., Xu, G.,Wang, X., Huang, Y., Yue,W., et al. (2019). Spatio-temporal

deep learning method for ADHD fMRI classification. Inform. Sci. 499, 1–11.

doi: 10.1016/j.ins.2019.05.043

Mash, L. E., Linke, A. C., Olson, L. A., Fishman, I., Liu, T. T., and Müller, R.-

A. (2019). Transient states of network connectivity are atypical in autism:

a dynamic functional connectivity study. Hum. Brain Mapp. 40, 2377–2389.

doi: 10.1002/hbm.24529

Mostafa, S., Tang, L., andWu, F.-X. (2019). Diagnosis of autism spectrum disorder

based on eigenvalues of brain networks. IEEE Access 7, 128474–128486.

doi: 10.1109/ACCESS.2019.2940198

Musso, M. W., and Gouvier, W. D. (2014). “Why is this so hard?” A review of

detection of malingered adhd in college students. J. Attent. Disord. 18, 186–201.

doi: 10.1177/1087054712441970

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

boltzmann machines,” in ICML, 807–814.

Narad, M. E., Garner, A. A., Peugh, J. L., Tamm, L., Antonini, T. N., Kingery,

K. M., et al. (2015). Parent-teacher agreement on ADHD symptoms across

development. Psychol. Assess. 27:239. doi: 10.1037/a0037864

Nichols, S. L., andWaschbusch, D. A. (2004). A review of the validity of laboratory

cognitive tasks used to assess symptoms of adhd. Child Psychiatry Hum. Dev.

34, 297–315. doi: 10.1023/B:CHUD.0000020681.06865.97

Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E.

D., et al. (2013). Multisite functional connectivity MRI classification of autism:

abide results. Front. Hum. Neurosci. 7:599. doi: 10.3389/fnhum.2013.00599

Niu, K., Guo, J., Pan, Y., Gao, X., Peng, X., Li, N., et al. (2020). Multichannel

deep attention neural networks for the classification of autism spectrum

disorder using neuroimaging and personal characteristic data. Complexity

2020:1357853. doi: 10.1155/2020/1357853

Openneer, T. J., Marsman, J.-B. C., van der Meer, D., Forde, N. J., Akkermans,

S. E., Naaijen, J., et al. (2020). A graph theory study of resting-state

functional connectivity in children with tourette syndrome. Cortex 126, 63–72.

doi: 10.1016/j.cortex.2020.01.006

Pagnozzi, A. M., Conti, E., Calderoni, S., Fripp, J., and Rose, S. E. (2018).

A systematic review of structural MRI biomarkers in autism spectrum

disorder: a machine learning perspective. Int. J. Dev. Neurosci. 71, 68–82.

doi: 10.1016/j.ijdevneu.2018.08.010

Parikh, M. N., Li, H., and He, L. (2019). Enhancing diagnosis of autism with

optimized machine learning models and personal characteristic data. Front.

Comput. Neurosci. 13:9. doi: 10.3389/fncom.2019.00009

Parisot, S., Ktena, S. I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., et al. (2018).

Disease prediction using graph convolutional networks: application to autism

spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130.

doi: 10.1016/j.media.2018.06.001

Park, J., Kim, C., Ahn, J.-H., Joo, Y., Shin, M.-S., Lee, H.-J., et al. (2019). Clinical

use of continuous performance tests to diagnose children with ADHD. J. Attent.

Disord. 23, 531–540. doi: 10.1177/1087054716658125

Pelham, W. E., Foster, E. M., and Robb, J. A. (2007). The economic impact of

attention-deficit/hyperactivity disorder in children and adolescents. J. Pediatr.

Psychol. 32, 711–727. doi: 10.1093/jpepsy/jsm022

Pelham, W. E. Jr., Fabiano, G. A., and Massetti, G. M. (2005). Evidence-

based assessment of attention deficit hyperactivity disorder in

children and adolescents. J. Clin. Child Adolesc. Psychol. 34, 449–476.

doi: 10.1207/s15374424jccp3403_5

Pellegrini, E., Ballerini, L., Hernandez, M. d. C. V., Chappell, F. M.,

González-Castro, V., Anblagan, D., et al. (2018). Machine learning of

neuroimaging for assisted diagnosis of cognitive impairment and dementia: a

systematic review. Alzheimers Dement. 10, 519–535. doi: 10.1016/j.dadm.2018.

07.004

Peng, X., Lin, P., Zhang, T., and Wang, J. (2013). Extreme learning machine-based

classification of ADHD using brain structural MRI data. PLoS ONE 8:e79476.

doi: 10.1371/journal.pone.0079476

Perrin, J., Stein, M., Amler, R., Blondis, T., Feldman, H., Meyer, B., et al.

(2001). Committee on quality improvement. Subcommittee on attention-

deficit/hyperactivity disorder. Clinical practice guideline: treatment of the

school-age child with attention-deficit/hyperactivity disorder. Pediatrics

108:e44. doi: 10.1542/peds.108.4.1033

Plitt, M., Barnes, K. A., and Martin, A. (2015). Functional connectivity

classification of autism identifies highly predictive brain features but

falls short of biomarker standards. Neuroimage Clin. 7, 359–366.

doi: 10.1016/j.nicl.2014.12.013

Polanczyk, G., De Lima, M. S., Horta, B. L., Biederman, J., and Rohde, L.

A. (2007). The worldwide prevalence of adhd: a systematic review and

metaregression analysis.Ame. J. Psychiatry 164, 942–948. doi: 10.1176/ajp.2007.

164.6.942

Prasad, N. N., and Rao, J. N. (1990). The estimation of the mean

squared error of small-area estimators. J. Am. Stat. Assoc. 85, 163–171.

doi: 10.1080/01621459.1990.10475320

Premi, E., Gazzina, S., Diano, M., Girelli, A., Calhoun, V. D., Iraji, A.,

et al. (2020). Enhanced dynamic functional connectivity (whole-brain

chronnectome) in chess experts. Sci. Rep. 10:7051. doi: 10.1038/s41598-020-

63984-8

Frontiers in Neuroinformatics | www.frontiersin.org 18 January 2021 | Volume 14 | Article 575999

https://doi.org/10.1542/peds.2009-1522
https://doi.org/10.1016/j.neucom.2018.04.080
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-319-09330-7_27
https://doi.org/10.1109/CCBD.2014.42
https://doi.org/10.1017/S0033291703008109
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neulet.2017.05.005
https://doi.org/10.1007/978-3-030-00919-9_35
https://doi.org/10.3389/fnins.2018.00491
https://doi.org/10.1007/978-3-030-00931-1_24
https://doi.org/10.1016/j.neuron.2011.12.014
https://doi.org/10.1016/j.brainres.2020.147143
https://doi.org/10.1002/aur.1615
https://doi.org/10.1038/35084005
https://doi.org/10.1016/j.jocs.2018.04.013
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.1016/j.ins.2019.05.043
https://doi.org/10.1002/hbm.24529
https://doi.org/10.1109/ACCESS.2019.2940198
https://doi.org/10.1177/1087054712441970
https://doi.org/10.1037/a0037864
https://doi.org/10.1023/B:CHUD.0000020681.06865.97
https://doi.org/10.3389/fnhum.2013.00599
https://doi.org/10.1155/2020/1357853
https://doi.org/10.1016/j.cortex.2020.01.006
https://doi.org/10.1016/j.ijdevneu.2018.08.010
https://doi.org/10.3389/fncom.2019.00009
https://doi.org/10.1016/j.media.2018.06.001
https://doi.org/10.1177/1087054716658125
https://doi.org/10.1093/jpepsy/jsm022
https://doi.org/10.1207/s15374424jccp3403_5
https://doi.org/10.1016/j.dadm.2018.07.004
https://doi.org/10.1371/journal.pone.0079476
https://doi.org/10.1542/peds.108.4.1033
https://doi.org/10.1016/j.nicl.2014.12.013
https://doi.org/10.1176/ajp.2007.164.6.942
https://doi.org/10.1080/01621459.1990.10475320
https://doi.org/10.1038/s41598-020-63984-8
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Eslami et al. Survey on ML Models for ADHD and ASD

Preti, M. G., Bolton, T. A., and Van De Ville, D. (2017). The dynamic

functional connectome: state-of-the-art and perspectives. Neuroimage 160,

41–54. doi: 10.1016/j.neuroimage.2016.12.061

Price, T., Wee, C.-Y., Gao, W., and Shen, D. (2014). “Multiple-network

classification of childhood autism using functional connectivity

dynamics,” in International Conference on Medical Image Computing

and Computer-Assisted Intervention (Boston, MA: Springer), 177–184.

doi: 10.1007/978-3-319-10443-0_23

Qu, L., Wu, C., and Zou, L. (2019). 3D dense separated convolution module for

volumetric image analysis. arXiv[Preprint].arXiv:1905.08608.

Qureshi, M. N. I., and Lee, B. (2016). “Classification of ADHD subgroup

with recursive feature elimination for structural brain MRI,” in 2016

38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC) (Orlando, FL: IEEE), 5929–5932.

doi: 10.1109/EMBC.2016.7592078

Qureshi, M. N. I., Min, B., Jo, H. J., and Lee, B. (2016). Multiclass classification

for the differential diagnosis on the adhd subtypes using recursive feature

elimination and hierarchical extreme learning machine: structural MRI study.

PLoS ONE 11:e0160697. doi: 10.1371/journal.pone.0160697

Rabany, L., Brocke, S., Calhoun, V. D., Pittman, B., Corbera, S., Wexler, B. E.,

et al. (2019). Dynamic functional connectivity in schizophrenia and autism

spectrum disorder: convergence, divergence and classification. Neuroimage

Clin. 24:101966. doi: 10.1016/j.nicl.2019.101966

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks.

arXiv[Preprint].arXiv:1511.06434.

Rahman, M. M., and Davis, D. (2013). Addressing the class imbalance

problem in medical datasets. Int. J. Mach. Learn. Comput. 3:224.

doi: 10.7763/IJMLC.2013.V3.307

Raiker, J. S., Freeman, A. J., Perez-Algorta, G., Frazier, T. W., Findling,

R. L., and Youngstrom, E. A. (2017). Accuracy of achenbach scales in

the screening of attention-deficit/hyperactivity disorder in a community

mental health clinic. J. Am. Acad. Child Adolesc. Psychiatry 56, 401–409.

doi: 10.1016/j.jaac.2017.02.007
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