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Abstract Autism spectrum disorder (ASD) is a common

heritable neurodevelopmental disorder, which is charac-

terized by communication and social deficits that reduce

the reproductive fitness of individuals with the disorder.

Here, we studied the genomic characteristics of 651 ASD

genes in a whole-exome sequencing dataset, to search for

traces of the evolutionary forces that helped maintain ASD

in the human population. We show that ASD genes are

*65 longer and *20 % less variable than non-ASD

genes. The mutational shortage in ASD genes was partic-

ularly eminent when considering only deleterious genetic

variations, which is a hallmark of negative selection. We

further show that these genomic characteristics are unique

to ASD genes, as compared with brain-specific genes or

with genes of other diseases. Our findings suggest that

ASD genes have evolved under complex evolutionary

forces, which have left a unique signature that can be used

to identify new candidate ASD genes.

Keywords Autism spectrum disorder (ASD) � Evolution �
Exome � Negative selection

Introduction

Autism spectrum disorders (ASDs) are a collection of

neurodevelopmental conditions, which are characterized by

impaired communication skills, avoidance of social inter-

actions, and repetitive and stereotype behavior (American

Psychiatric Association 2013). In the past three decades,

ASD has become a major public health concern, with a

substantial increase in the prevalence of ASD worldwide

(Elsabbagh et al. 2012; Christensen et al. 2016; Davi-

dovitch et al. 2013; Richards et al. 2015; Taylor et al.

2013). While this increase has largely been attributed to

higher public awareness and changes in diagnostic criteria

(Lord 2011; Posserud et al. 2010; Maenner et al. 2014), the

contribution of other risk factors cannot be excluded.

Research into the risk factors of ASD and the molecular

mechanisms associated with them can shed light on the

possible etiologies of these increasingly prevalent neu-

rodevelopment conditions.

It is well accepted that genetic factors play a significant

role in ASD susceptibility (Connolly and Hakonarson

2014; de la Torre-Ubieta et al. 2016; Devlin and Scherer

2012; Huguet et al. 2013; Muers 2012). During the past

decade, genetic studies have suggested hundreds of ASD-

susceptibility genes, but only a few of these genes have

been robustly associated with the disorder (Abrahams et al.

2013; Iossifov et al. 2015; Sanders et al. 2015) and muta-

tions in these genes can explain ASD in only a portion of

affected individuals. Thus, an important endeavor in ASD

research is to identify new ASD susceptibility genes and to

study their role in the etiology of the disease.

Individuals with ASD show marked deficiencies in

communication and social skills and a repetitive and

stereotypic behavior, which complicate their integration

into society and significantly reduce their reproductive
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fitness (Power et al. 2013). Hence, one would expect that

mutations that predispose to such a highly heritable and

harmful trait would be eliminated from the population by

natural selection (Keller and Miller 2006), and the fact that

ASD has remained a relatively common trait in the popu-

lation is, therefore, an evolutionary enigma. A number of

theories have been postulated to explain this enigma

(Ploeger and Galis 2011), all of which rely on the

assumption that ASD is a polygenic trait. Therefore, certain

mutations would have a deleterious effect only if they

occur in combination with other mutations (Huguet et al.

2013). Other theories postulate that certain mutations in

ASD-susceptibility genes may result in neurotypical

development accompanied by an evolutionary advanta-

geous trait (e.g., higher intelligence) when expressed under

a certain genetic background, but in an ASD when

expressed under a different genetic background (Ploeger

et al. 2009). If these assumptions are true, then genes that

are involved in ASD susceptibility are expected to have a

unique allelic signature, which has possibly been shaped by

both positive and negative selection.

In recent years, genetic research has shifted from small-

scale studies, which often focus on a few genes in small

samples, to large, high-throughput studies of massive

‘omics’ data obtained from large populations and from a

wide range of species (Thorisson et al. 2009). The resulting

high-resolution and rich genomic data is a ‘‘goldmine’’ for

population genetics analyses (Platt and Novembre 2012).

In the current study, we employed such a large whole-

exome sequencing dataset to explore the genomic and

evolutionary characteristics of genes associated with ASD.

Methods

Sample and Genomic Data

We studied the exome sequencing dataset previously gen-

erated by Tennessen et al. (2012). This dataset was derived

from the genomes of 1351 European-American and 1088

African-Americans individuals, sampled randomly from

fifteen North American cohorts who participated in a large

genetic study of cardiovascular diseases. The exome

sequencing dataset included data on 503,481 single-nu-

cleotide variants (SNVs) distributed across 15,585 human

genes. There was no indication of population- or pheno-

type-specific effects, or of other systematic biases, during

the analysis of these data (Tennessen et al. 2012).

Disease Gene Datasets

To determine genes associated with ASD, we used the

annotation from the human gene module of AutDB (Basu

et al. 2009) (data freeze of December 2015), which is the

most comprehensive genetic database of ASD to date. Of

the 790 ASD genes in AutDB, 651 genes (82.4 %) were

included in the exome sequencing dataset (Supplementary

Table S1). This percentage is slightly higher than that of all

genes in the human genome represented in this exome

dataset [75.5 %; (Brown et al. 2014)], but the difference is

not statistically significant (P = 0.11; two-sided Chi-

Square test). Furthermore, we used the gene scoring

module of AutDB (Abrahams et al. 2013) to construct a

subset of 12 ‘‘high-confidence’’ and 18 ‘‘strong candidate’’

ASD genes (categories ‘‘1’’ and ‘‘2’’, respectively, in the

SFARI gene scoring module) (Supplementary Table S1).

We used three other disease-specific gene sets and one

brain-specific gene set as control groups for our analyses

(Supplementary Table S1). Specifically, we used the gene

sets of two neurological diseases: schizophrenia and Alz-

heimer’s disease, which we downloaded from the

‘‘Schizophrenia Gene Resource (SZGR)’’ (258 genes) (Jia

et al. 2010) and from the ‘‘AlzGene database’’ (570 genes)

(Bertram et al. 2007) respectively. We used asthma-related

genes from ‘‘InnateDB’’ (499 genes) (Lynn et al. 2008) as a

gene set of an early-onset disease. Finally, we used the

7795 genes from Supplementary Table S1 of Ouwenga and

Dougherty (2015) as a brain-specific gene set.

Statistical Analyses

We examined the coding sequence length, frequency of

SNVs, and measures of nucleotide diversity of genes from

the exome dataset of Tennessen et al. (2012). We calcu-

lated Tajima’s D statistic (Tajima 1989) for all genes in our

dataset to compare the observed frequency spectrum of

SNVs with neutral model expectations. We compared these

genomic characteristics between ASD genes and non-ASD

genes using two-tailed t-tests. We also tested the signifi-

cance of our findings by using a bootstrap procedure with

1000 replications. For genomic characteristics that were

significantly different between ASD genes and non-ASD

genes, we further compared ASD genes to the genes of

three other disease-specific groups, namely, genes associ-

ated with schizophrenia, Alzheimer’s disease, and asthma.

To account for the overlap of genes between these diseases,

we calculated the 95, 99 and 99.9 % confidence intervals

for the difference between the means of the genomic

characteristics of ASD and those of the other diseases (e.g.,

DlASD-Alzheimer’s). Consequently, a CI that does not include

zero indicates a significant difference between the two

groups (at P\ 0.05, P\ 0.01, and P\ 0.001 for a 95, 99,

and 99.9 % CI, respectively). Finally, we used the unique

variables of ASD genes in a multivariate logistic regression

model differentiate ASD genes from non-ASD genes.

Then, we used the DAVID functional annotation analysis
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(with its default parameters) (Huang da et al. 2009) to test

which biological pathways (i.e., groups of genes that have

similar biological ontologies) are enriched with the top-

ranked genes by this model.

Results

Genomic Characteristics

We first compared several genomic and evolutionary

characteristics of 651 ASD genes and 14,934 non-ASD

genes (Table 1). On average, ASD genes were both longer

than non-ASD genes (2.68 vs. 1.63 kbp, respectively) and

less variable than non-ASD genes (nucleotide diversity:

p = 0.036 % vs. p = 0.046 %, respectively). The lower

variability in ASD genes was driven by their relative dearth

in SNVs (20.61 vs. 23.57 per kbp, respectively) and by the

lower allele frequencies of these SNVs (rare/common SNV

ratio: 8.40 vs. 6.80, respectively). All differences between

ASD and non-ASD genes were statistically significant

(P\ 0.001) and were more prominent when compared

with high-confidence subset of ASD genes to the non-ASD

genes (Table 1).

Next, we calculated Tajima’s D statistic (Tajima 1989)

for all genes in our dataset to compare the observed fre-

quency spectrum of SNVs with neutral model expectations.

The majority of the genes examined in this study ([99 %)

had a negative Tajima’s D, indicating an excess of low-

frequency polymorphisms relative to expectation, an

observation that is consistent with the recent expansion of

the modern human population (McEvoy et al. 2011). On

average, Tajima’s D value was more negative in ASD

genes than in non-ASD genes (-1.96 vs.-1.76, respec-

tively; P\ 0.001), and this difference was even greater

between the high-confidence subset of the ASD genes and

the non-ASD genes (Table 1).

We continued to examine the effects of evolutionary

forces on loci with potential functional consequences. ASD

genes had a significantly lower non-synonymous/

Table 1 Genomic and

evolutionary characteristics
Genomic characteristic ASD genesa

(High-confidence ASD genesb)

Non-ASD genes P-values

Number of genes 651

(30)

14,934 –

Gene lengthc (kbp) 2.68 ± 2.54

(4.33 ± 2.78)

1.63 ± 1.38 \0.001

(\0.001)

No. of SNV (per kbp) 20.61 ± 8.90

(15.71 ± 5.49)

23.57 ± 10.70 \0.001

(\0.001)

Rare/common SNV ratiod 8.40 ± 8.06

(10.77 ± 7.46)

6.80 ± 6.13 \0.001

(0.007)

Nucleotide diversity (p %) 0.036 ± 0.060

(0.022 ± 0.021)

0.046 ± 0.060 \0.001

(\0.001)

Tajima’s D -1.96 ± 0.48

(-2.18 ± 0.39)

-1.76 ± 0.49 \0.001

(\0.001)

Non-synonymous/synonymous SNV ratio 1.34 ± 1.12

(0.87 ± 0.43)

1.74 ± 1.40 \0.001

(\0.001)

No. of missense SNVs (per kbp) 9.39 ± 5.68

(6.44 ± 3.73)

11.31 ± 6.89 \0.001

(\0.001)

No. of nonsense SNVs (per kbp) 0.15 ± 0.42

(0.03 ± 0.65)

0.30 ± 0.65 \0.001

(\0.001)

No. of functional SNV (per kbp)

(Polyphen2)e
0.21 ± 0.43

(0.08 ± 0.18)

0.41 ± 0.81 \0.001

(\0.001)

a Genes that were associated with ASD in the literature according to the AutDB database {Basu,

2009#468}
b Genes with strong evidence of association with ASD according to the SFARI gene scoring module

{Abrahams, 2013#904}
c Gene’s coding sequence length
d Rare SNV—minor allele frequency (MAF)\ 0.5 %; Common SNVs—MAF C0.5 %
e SNVs with potential functional effect were determined using Polyphen2 software {Adzhubei,

2013#1264}
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synonymous SNVs ratio, as compared with non-ASD genes

(1.34 vs. 1.74, respectively; P\ 0.001). This difference

was particularly noticeable when considering SNVs with

potential deleterious effects [e.g., nonsense SNVs or dele-

terious SNVs according to PolyPhen-2 (Adzhubei et al.

2013)]. These findings suggest that negative selection has a

stronger effect in removing potentially deleterious SNVs

from ASD genes than from non-ASD genes. As in the

previous analyses, the magnitude of all differences

increased when comparing the high-confidence ASD genes

to the non-ASD genes (Table 1).

Recently, the Exome Aggregation Consortium (ExAC),

had released the exome sequencing data of over 60,000

people (http://exac.broadinstitute.org; Release 0.3.1).

Examining the data from this dataset revealed similar dif-

ferences in the genomic characteristics of ASD genes and

non-ASD genes (Supplementary Table S2), thus providing

further assurance for our finding.

Positive Selection

Tennessen et al. have identified signatures of positive

selection in 114 genes from their dataset [Table S4 in

Tennessen et al. (2012)]. None of these genes overlapped

with our list of ASD genes. We further examined the

representation of ASD genes in 722 autosomal genomic

regions that have been implicated in several studies as

targets of positive selection [reviewed in Akey (2009)].

The proportion of ASD genes in these regions was slightly

higher than that of non-ASD genes (12.9 vs. 9.7 %,

respectively), but this enrichment was not statistically

significant after accounting for their relatively longer

genomic sequence (P = 0.096).

ASD Genes Versus Genes of Other Diseases

To test whether our findings are specific to ASD genes, we

examined the same genomic characteristics in a set of

brain-specific genes (n = 7795) and in three sets of other

disease-specific genes [namely, Alzheimer’s disease

(n = 570), schizophrenia (n = 258), and asthma

(n = 499)]. Due to the overlap of genes in the different

datasets (Supplementary Fig. S1), we calculated the CI of

the difference between the means to evaluate significant

differences between ASD genes and genes from the other

datasets. ASD genes were longer (P\ 0.001), had a higher

proportion of rare SNVs (P\ 0.001), and had a more

negative Tajima’s D (P\ 0.05) than genes from any of the

other four gene sets (Fig. 1a, d, and e, respectively). In

addition, ASD genes had fewer SNV per kbp than the

genes of schizophrenia and Alzheimer’s disease

(P\ 0.001 for each comparison; Fig. 1c), a lower non-

synonymous/synonymous ratio than brain-specific genes

(Fig. 1f), and a lower rate of functional SNVs than Alz-

heimer’s disease genes (P\ 0.05 for each comparison;

Fig. 1g).

A Multivariate Model for Classifying ASD Genes

We conducted a multivariate logistic regression analysis to

test the combined classification ability of the above-men-

tioned characteristics of ASD genes (Table 2). The

resulting model fitted the data very well (Homster–Lem-

show test; P = 0.989), but had a moderate classification

efficiency (AUC = 0.70; Fig. 2). However, applying the

same model to the high-confidence ASD genes resulted in a

remarkably high classification efficiency (AUC = 0.92),

whereas, by contrast, applying the same genomic charac-

teristics to classification models of the other disease-

specific gene sets resulted in a poor classification efficiency

(schizophrenia, AUC = 0.61; Alzheimer’s disease,

AUC = 0.58; and asthma, AUC = 0.63) (Fig. 2). Similar

results were obtained when we tested the ability of these

genomic characteristics to differentiate these disease-

specific genes from brain-specific genes (Supplementary

Table S3).

Finally, we used the 2 % top-ranked genes that were

predicted by these genomic characteristics to be associated

with ASD in a DAVID functional annotation analysis [309

genes overall, of which 91 are listed in AutDB (Basu et al.

2009)]. These top-ranked genes were enriched in one

KEGG pathway (‘‘long-term potentiation’’) and with one

PANTHER pathway (‘‘ionotropic glutamate receptor

pathway’’) at a significance level of P\ 0.01 (Bonferroni-

corrected). In addition, these genes were enriched in 19

other gene ontology (GO) terms, most of which are related

to neuronal/synaptic function and to chromatin remodeling

(Supplementary Table S4).

Discussion

We examined the exome data of ASD susceptibility genes

to look for signatures of the evolutionary forces that have

shaped the genomic landscape of these genes. To the best

of our knowledge, this is the first study to make such

analysis by using a high-throughput whole-exome dataset

from a large and diverse population (Tennessen et al.

2012). Our findings suggest that genes associated with

ASD have genomic characteristics that are distinct from

other genes in the genome, and they provide clues to the

evolutionary forces that act on these genes.

Our analysis indicates that ASD genes are, on average,

65 % longer than other genes in the genome. This finding is

not new, and it has already been shown by King et al.

(2013), who attributed the exceptionally long sequences of
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ASD genes to their unique transcription regulation mech-

anism. This observation was then amended by Shohat et al.

(2014), who implied that exceptionally long genomic

sequences are not an inherent characteristic of all ASD risk

genes, but, rather, that the long sequences appear only in

genes that reside within copy-number variations (CNVs)

associated with ASD. Notably, our analysis is slightly

different from the analyses made in these two studies, as it

focuses on exome sequences; whereas non-coding

sequences may constitute a significant portion of some

gene transcripts, exome sequences contain only tiny por-

tions of non-coding sequences. We also show that ASD

genes are significantly longer than other brain-expressed

genes, which are thought to be longer than other genes in

the genome (Ouwenga and Dougherty 2015), and that their

exome length is unique, as compared with three other

disease-specific gene sets, two of which are associated with

other brain disorders (schizophrenia and Alzheimer’s

Fig. 1 Genomic characteristics

of ASD genes relative to brain-

specific genes and to three other

sets of disease-specific genes.

All genes associated with

autism spectrum disorder (ASD)

are compared with genes that

are expressed in the brain and to

genes that are specific to

schizophrenia (Scz),

Alzheimer’s disease (Alz), and

asthma (Ast). Comparisons

regard: a protein coding

sequence length; b nucleotide

diversity (p); c number of SNVs

per kbp; d rare/common SNV

ratio; e Tajima’s D; f non-
synonymous/synonymous SNV

ratio; g number of functional

SNV per kbp; h number of

nonsense SNV per kbp. Values

indicate the mean ± SEM.

Significant differences between

the groups were calculated by

using a shared confidence

interval for the differences

between the means (see

Methods) and are indicated as *,

**, and *** for P\ 0.05,

P\ 0.01, and P\ 0.001,

respectively
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disease). It is not clear, at this point, why the protein-

coding sequence of ASD genes is exceptionally long. One

possible explanation is that it provides a large and versatile

target for genetic manipulations, which could contribute to

the development of complex and possibly diverse cognitive

functions.

The lower nucleotide diversity—and, specifically, the

paucity of SNVs with potentially deleterious conse-

quences—that we observed in ASD genes as compared

with non-ASD genes is a hallmark of negative selection

(Hartl and Clark 2006). Myers et al. (2011) detected a

similar signature of negative selection among 408 brain-

expressed genes, which were studied in 240 ASD and

schizophrenia cases and in a comparable number of control

cases. In addition, results from multiple exome sequencing

studies of families with a child diagnosed with ASD

(Iossifov et al. 2012; De Rubeis et al. 2014) indicate a shift

in the mutation spectrum toward deleterious rare variants

among probands, as compared with their unaffected sib-

lings, and these findings were further supported by gen-

ome-wide analyses of de novo mutations (Petrovski et al.

2013; Samocha et al. 2014; Uddin et al. 2014). Taken

together, these results support the premise that negative

selection removes damaging mutations from genes

involved in the etiology of ASD.

Several theories have been raised regarding the mech-

anisms involved in maintaining ASD, a commonT
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Fig. 2 Receiver operating characteristic(ROC). The plots demon-

strate the classification efficiency of different sets of disease-specific

genes [autism spectrum disorder (ASD), high-confidence ASD genes

(HC-ASD), schizophrenia (Scz), Alzheimer’s disease (Alz), and

asthma (Ast)], based on multivariate logistic models with six genomic

characteristics (gene length, number of SNVs per kbp, rare/common

SNV ratio, non-synonymous/synonymous SNV ratio, functional SNV

per kbp, and Tajima’s D). A larger area under the curve indicates a

better classification accuracy of the model
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heritable low-reproductive trait, in the human population

(Keller and Miller 2006; Ploeger and Galis 2011). Inter-

estingly, some of these theories suggest that ASD genes

have evolved under balancing selection, i.e., that their

alleles may exert both positive and negative effects on

human fitness (Keller and Miller 2006; Ploeger et al. 2009).

Although our findings support the premise that ASD genes

are subjected to strong negative selection, we could not

find evidence for positive or balancing selection acting on

these genes. Thus, the prevalence of ASD in the human

population is likely maintained through a large number of

rare susceptibility alleles (Krumm et al. 2015) and/or

through genetic variations that exert deleterious effect only

under certain genetic or environmental backgrounds (i.e.,

GxG or GxE interactions) (Tordjman et al. 2014; Chaste

and Leboyer 2012; Corominas et al. 2014).

The utilization of genomic parameters for classifying

ASD genes is an important aspect of this study. We show

that employing a combination of ASD-specific genomic

characteristics can reliably predict ASD susceptibility

genes. However, despite the relatively good classification

efficiency of such a multivariate model, the resulting pre-

dicted genes should be treated as candidate genes for ASD,

and they should be further studied by other approaches,

which may confirm or refute their involvement in the eti-

ology of ASD.

Our study has several advantages and disadvantages.

The main advantage is the size and comprehensiveness of

the exome dataset; the large sample size, which includes

individuals of both European and African ancestry, offers

an adequate representation of the human population. In

addition, the large sequencing depth of more than 75 % of

the coding exons in the human genome has provided us

with an unprecedented dataset for population genetic

analysis of this kind. Considering all genes in the AutDB

dataset as ASD genes is both an advantage and a disad-

vantage of the study. While AutDB is the most compre-

hensive genetic database of ASD, it likely includes many

genes that are false positives (Abrahams et al. 2013) and

might have introduced some bias to our results. In addition,

some well-established ASD genes (e.g., CHD8, SHANK3

and NRXN1) are not included in our analysis due to their

absence from the exome dataset of Tennessen et al. (2012).

The other disease-specific gene sets in our study may also

lack important candidate genes. Nevertheless, the consis-

tent differences between ASD and non-ASD genes in our

analyses suggest that such a bias is likely negligible.

In summary, our results indicate that genes implicated in

the etiology of ASD have explicit genomic characteristics,

which separate them from other genes in the genome.

These characteristics are likely a result of complex evo-

lutionary forces that act on ASD genes and can be used as a

signature to identify additional ASD candidate genes.
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