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Abstract: We examine the theoretical implications of empirical studies developed over recent years.
These experiments have explored the biosemiotic nature of communication streams from emotional
neuroscience and embodied mind perspectives. Information combinatorics analysis enabled a deeper
understanding of the coupling and decoupling dynamics of biosemiotics streams. We investigated
intraindividual and interpersonal relations as coevolution dynamics of hybrid couplings, synchroniza-
tions, and desynchronizations. Cluster analysis and Markov chains produced evidence of chimaera
states and phase transitions. A probabilistic and nondeterministic approach clarified the properties of
these hybrid dynamics. Thus, multidimensional theoretical models can represent the hybrid nature
of human interactions.

Keywords: synchronization; semiotics; information; cognitive neuroscience; psychotherapy; conver-
sation; mapping; chimaera states; statistical dynamics; coupling

Science is built up with facts, as a house is with stones.

However, a collection of facts is no more a science than a heap of stones is a
house.

Henri Poincaré, Science and Hypothesis

1. Introduction. Complexity, Noise, and Orders

We will try to expand some theoretical outcomes of empirical and experimental re-
search on human interactions published by our laboratories in recent years. We built an ad-
vanced multidimensional methodology for analyzing human dynamics, mainly focusing on
synchronization in an embodied mind framework [1,2]. Patterns of synchronization form
the foundations of the cognition [3,4] continuum between healthy and disease states [5].
Structural coupling and synchronization arise in human dynamics in many ways, including
coordination in conversations: speech, movement, emotions, and physiology [6–12]. It is
a partially self-contained setting and practices to observe and facilitate transformation in
human conditions and relations. Psychotherapy has been described as “one of the most
complex bio-psycho-social systems in which patterns of language, cognition, emotion,
and behavior are formed and changed through the dynamics of therapist and patient
interactions” [13,14]. Beyond clinical research, studying such an exceptional human dy-
namics environment can lead to a general model of human dynamics, comprehending
the linguistic, behavioral, and physiological realms. The integration of communication,
action, bodies, and environments highlights our embodied interactions’ multimodality and
parallel multiactivity [15,16].

We started by focusing our studies on language. Language study is scaled in complex
structures: from informational systems to mesoscopic morphological patterns to semantic
and narrative streams. In verbal interactions, voice tonality, volume, pitch, cadence, rhythm,
and turn-taking are relevant. Shannon [17] built the foundations of the information theory
of texts and speech. His less famous work on the prediction and entropy of printed
English [18] is a resource for inspiring new research. It might be interesting to consider
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the distribution of information and organization in different living and nonliving systems
in the same perspective. In this perspective, a graph proposed by Schreiber [19] mapped
scattered areas of various forms of order, entropy and knowledge still interspersed with
regions of the unknown, as in old charts. Following his mapping, we can find periodic
and noisy oscillations, deterministic and stochastic areas of chaos, stochastic resonance,
self-organized criticality, nonlinearity, or noise. Then, there are a few other islands where a
connection between our knowledge models and real-world phenomena is yet to be well
established. This kind of dynamical mapping might be synchronic and diachronic, in
spatial distribution and time transitions.

The structure of different systems can be known and modified through the emergence
of self-organization or by external actions, by casual or planned perturbations, including
measurements. Some interactions can lead to coupling between systems, and if they
repeat in time, they might produce forms of synchronization. Maturana and Varela [20]
considered synchronization a form of structural coupling occurring when two systems
repeatedly perturb each other. “Synchronization is a nonlinear phenomenon discovered at
the beginning of the scientific revolution”, and in its classical definition, synchronization
refers to adjustment or entrainment in frequencies or phase of periodic oscillators due to
weak interactions that lead to structural coordination between systems" [21]. This process
can lead to the emergence of adaptive behavior between interacting systems. Pecora and
Carroll [22], Ott, Grebogi and Yorke [23], and Pyragas [24] found that synchronization can
be used to change the dynamic behavior of complex systems.

2. Materials and Methods. Biosemiotics Pattern Analysis

Our initial approach was different from most of the studies mentioned above. We chose
a method, Recurrence Quantification Analysis–RQA [25,26], that does not generate any
specific hypothesis on the form of data and does not need to consider time series produced
by a dynamic system. Our primary aim was to build a statistical tool for reliable quantitative
measures of the degree of organization (as expressed by the recurrence of patterns) of a
flow of signs. We demonstrated how this could be performed with a relatively simple
mathematical model. The analysis of the informational structure of a text (irrespective of
its meaning) could unveil the hidden matching of patterns between two speaking persons.
The hidden matching relates to the flow and forms of information linking partners in
conversation. Through the phonetic configuration of speech, as represented in orthography,
we can extract relevant patterns in the dynamic structures of human interactions.

We used Recurrence Quantification Analysis, a methodology that can reliably measure
the recurrence of patterns, determinism, and entropy. Recurrence Plots (RP) were first
pioneered in physics by Eckmann, Kamphorst and Ruelle [25,26]. Later, Webber, Zbilut,
Giuliani and Marwan augmented this technique by identifying nonlinear variables for the
quantitative assessment of RPs, thus creating RQA. Since then, RQA has been used in differ-
ent areas, from molecular dynamics [27,28] to physiology [29] and bioinformatics [30–32].
In performing RQA, the original time series must be placed into an embedding matrix by
converting the original n elements column vector correspondent to the symbol series into a
p-dimensional matrix with columns as the original Xn series plus its lagged copies Xn+1,
Xn+2, . . . , Xn+1, while p is the embedding dimension. The quantification of recurrences is
acquired by many different ‘counts’ of repetitions within the matrix.

While testing the robustness of this methodology on written language [33], we had
to set to three (letters) for dimensional embedding, as this amplifies its sensitivity while
avoiding noise from low-level statistical features (for example, asymmetrical distribution of
couplets of letters). We might notice that a three-letter dimension represents a mesoscopic
information level in natural language, just between single letters and whole words. We
will later see the theoretical implications of this seemingly technical specification. Our time
series analysis used RQA and CRQA (cross recurrence) to measure the synchronization in
conversations as semiotic interactions. These informational patterns represent a preverbal
and a-conscious communication channel revealed by the frequent emergence of patterns
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of prosodic structures (such as the musicality of phoneme sequences, stereotyped words,
pauses and phrases).

Other independent centers started developing research on social and clinical interac-
tions using a similar methodology based on recurrence analysis. For example, they studied
postural or verbal time series of interpersonal coordination during conversations [34–36].
These studies usually took one type of time series (i.e., movement, speech, or physiology)
while not considering the mutual influence between different kinds of interaction. How-
ever, as human relationship dynamics are naturally hybrid, one type of interaction can
influence the coupling or uncoupling of the other streams: motor, semiotic or physiological.

3. Results. Hybrid Couplings and Synchronizations

Human interactions constantly involve multiple streams (language, movement, emo-
tions) which undergo coupling, decoupling and synchronizing. These multiscale and
hybrid interactions are better comprehended within the biosemiotics, embodied mind
framework that we defined as Mind Force [37,38]. We built the empirical paradigm of this
approach as a multidimensional analysis of speech and emotions in patients and therapists
in psychotherapy [39]. We chose Galvanic Skin Response—GSR and verbal prosody, as
both variables reveal, in different flows, the expression of emotions [40,41]. Our new
experiments studied four signals: the therapist’s speech transcription, the patient’s speech
transcription, the therapist’s GSR, and the patient’s GSR. We focused on how those four
variables modulated, coupled, synchronized, or desynchronized with each other. First,
we considered the combinatorics and patterns of letters (phonemes) and morphemes (the
minor portion of words that communicate significance). As mentioned, we had established
this methodology in previous studies, which validated robust informational measures of
entropy and determinism. In this new study, we initially considered the synchronization
with standard correlation coefficients of Principal Components Analysis. Afterwards, we
clustered all four signals using k-means resulting in a model representing this complex
system’s phase space and state transitions. Then, using a Markov Transition Matrix (see
Figure 1), we disclosed phase transition probabilities between linguistic and physiological
time series.
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The complex dyadic system evolves between two attractors. In the first attractor, state
four, the therapist strives to attune and entrain with the patient presenting low values of
GSR recurrence and determinism. The therapist has high recurrence and determinism
in prosody with repetitive semiotic patterns, perhaps to direct the patient’s emotional
expressions. The second attractor, at state five, is characterized by a medium level of GSR
recurrence and determinism for both patient and therapist. We evidence semiotic medium
recurrence and determinism for the therapist and low recurrence and determinism for the
patient. Overall, this phase represents a state in which the patient’s physiological anxiety
becomes more manageable and linguistic expressions are more integrated. In short, while
state four is an erratic phase of the interaction in which semiotics seems independent from
passions, state five shows an integration. This sequence in human interactions is consistent
with the literature in psychotherapy and neuroscience research on the embodied mind.

4. Discussion. The Chimera States in Human Interactions

This data analysis and mapping highlight dynamical landscapes of mixed states of
coupling, with mixed zones of synchronization, noninteraction, and drift in uncoupling that
can change over time. The Japanese physicist Yoshiki Kuramoto (1984b, 1984a) proposed a
paradigmatic mathematical model to describe synchronization dynamics in a large set of
coupled oscillators. The most frequent form of the model has the following equation:

dθi
dt

= ωi +
K
N

N

∑
j=1

sin
(
θj − θi

)
, i = 1 . . . . N, (1)

where the system is formed of N limit-cycle oscillators with phase θi and coupling K.
Then, in November 2002, Yoshiki Kuramoto and Dorjsuren Battogtokh published the

paper “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscilla-
tors” [42,43]. They observed the coexistence of coherence and incoherence in a network
of identical, nonlocally coupled, complex Ginzburg–Landau oscillators. While coupled
nonidentical oscillators were known to exhibit mixed complex behavior (frequency locking,
phase synchronization, partial synchronization, and incoherence), identical oscillators were
supposed to either synchronize in phase or incoherently drift. They showed that oscillators
that were identically coupled with similar natural frequencies could behave differently
from one another for specific initial conditions. Some could synchronize while others
remained incoherent in a stable state. They considered the following equation, which they
called the nonlocally coupled complex Ginzburg–Landau equation:

δ

δt
ψ(x, t) = ω(x)−

∫
G
(
x− x′

)
sin
(
ψ(x.t)− ψ

(
x′, t

)
+ α
)
dx′

with ω(x) = ω for all x.
Later, Abrams and Strogatz [44,45] named it a chimaera state, from the mythological

Greek creature made up of parts of different animals and introduced some theoretical
clarifications for such behavior. Finally, they studied the most straightforward system
presenting a chimaera state, a ring of phase oscillators governed by:

ϑφ

θt
ω−

∫ π

−π
G
(

x− x′
)

sin
[
φ(x, xt)− φ

(
x′, t

)
+ α
]
dx′

Here, φ(x′, t) is the phase of the oscillator at position x at time t. The space variable x
runs from −π to π with periodic boundary conditions. The frequency ω plays no role in
the dynamics; one can set ω = 0 by redefining φ→ φ + ωt without otherwise changing the
form of the equation.

Chimaera states were later found in limit-cycle oscillators, chaotic oscillators, chaotic
maps and in neuronal systems. In the beginning, chimaera patterns were observed in
nonlocally coupled networks, but afterwards, these states were also found globally and
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locally (nearest neighbor) coupled networks and in modular networks [46,47]. The usage
of Markov chains for mapping couplings and chimaera states was also explored ([48,49].
C.R. Laing studied chimaera state in heterogeneous networks, analyzing the influence of
heterogeneous coupling strengths. Of further interest for human dynamics is the emergence
of chimaera states in multiscale networks that result from the networking of different
networks [50,51]. The ubiquity of chimaera mapping of synchronization and its different
typologies extended its original definition to areas that might include nonidentical coupling
oscillators in hybrid networks and multiscale networking of networks that were already
known to present chimeralike dynamics before this definition started to be used.

Our studies’ dynamic mapping of heterogeneous synchronization indicates that sim-
ilar dynamics involving different brain areas related to emotional, motor, and verbal
interactions co-occur. Cognitive tasks constantly require a balance between segregated
and integrated neural processing with relevant consequences for cognitive performance.
Segregation enables efficient computations in specialized brain regions, while integrated
systems ensure coordinated, robust performance. Focused states tend to involve shorter,
local connections, while integration largely relies on subcortical regions and cortical hubs
with diverse connections to other brain regions [52,53]. “Recognizing chimaera dynamics
can help to clarify the hybrid complexity of synchronization in critical cognitive states
where a balance between integration and segregation is required for adaptive cognition
and social interactions” [54]. Brain chimaera dynamics might also be related to different
neuronal interactions mediated by different electrical or chemical synapses in the nervous
system.

Further neural interactions involve neuromodulators and hormones, faster or slower
action, and different time frames [55]. Various types of neural interaction are undoubtedly
an additional factor in the emergence of chimaera dynamically states in human hybrid
synchronization [51]. As separate regions interact to perform neurocognitive tasks, variable
patterns of partial synchrony form chimaera states [3].

5. Conclusions: From Determinism to Statistical Dynamics

Human dynamics are so complex and prone to indeterminacy and randomness that
even deterministic chaos might be considered, in many cases, as a reductionist simplifica-
tion. Therefore, we might consider probabilistic models including elements of randomness.
The previous study highlighted how biopsychosocial dynamics are hybrid, discontinuous,
and have many degrees of freedom. We also highlighted how cluster analysis and Markov
states could help to clarify the dynamics. However, our knowledge of the state of the
systems is always incomplete, and some uncertainty is part of the game. While standard
dynamics usually consider the behavior of a single state, statistical dynamics define the
statistical ensemble as a probability cloud of the possible conditions in the system [56]. The
ensemble probability can be interpreted in two main ways:

(a) Epistemic probability of all the possible states.
(b) Empirical probability in repeated experiments.

Following this perspective, we used a probabilistic approach in the study of em-
pathy [57]. Empathy plays a significant role in human coordination, collaboration, and
change, in human interactions. Most authors agree that forms of resonance in imitation,
emotions, and communication are relevant factors of empathy. Following the expanding
literature on relational physiology, we explored if empathy would present physiological
evidence. We applied a Principal Component Analysis (PCA) on simultaneous GSR and
HR signals from a patient-therapist dyad. PCA revealed a ‘shared’ component in signals,
and two ‘individual’ components of independent correlation. Regression analysis showed
that the shared component predicted a therapy outcome (R2 = 0.28). We further examined
the common component dynamics in a symbolic Markovian discrete model and cluster
analysis.

Several studies on cognitive neuroscience [58,59] established statistical dynamics in
biological systems focusing on the reciprocal correlations between system descriptors.
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This scientific position focuses on the mesoscopic level [60,61], potentially expanding
correlations among system variables. This is the midpoint between pure “bottom-up”
and “top-down” approaches. The crucial role of mesoscopic dynamics was validated in
our physiological analysis and semiotics, as highlighted by the robust evidence for our
mesoscopic embedding in RQA since the first experiments. In this way, we focused on the
level of morphemes as word subcomponents. Morphemes have meaning and grammatical
functions. They can be decomposed into smaller morphemes without losing these two
crucial properties. Morphemes can be considered as semiotic quanta of information
in natural language, as they are the basic lexical item in a language. They are usually
composed of more than one phoneme and several letters or informational units [62–64].
Therefore, we can consider morphemes as the information quanta structuring coupling
and synchronization in natural human language.

We explored informational patterns in human interactions. We investigated intraindi-
vidual and interpersonal relations as coevolution dynamics of hybrid couplings, synchro-
nizations, and desynchronization. Cluster analyses and Markov chains produced evidence
of chimaera states and phase transitions. A probabilistic and nondeterministic approach
can clarify relevant properties of human dynamics, focusing on the mesoscopic scale and
statistical dynamics. Theoretical models of human interactions should be founded on the
hybrid nature of human structural couplings.
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