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Wave‑like patterns in parameter 
space interpreted as evidence 
for macroscopic effects resulting 
from quantum or quantum‑like 
processes in the brain
Stoyan Kurtev

Data from eight numerosity estimation experiments reliably exhibit wave‑like patterns in plots of the 
standard deviations of the response times along the abstract parameter of the magnitude of the error 
in the numerosity estimation. An explanation for this phenomenon is proposed in terms of an analogy 
between response times and error magnitude on one hand, and energy and position of quantum 
particles on the other, constructed using an argument for an overlap between the mathematical 
apparatus describing Hopfield‑type neural networks and quantum systems, established by some 
researchers. Alternative explanations are presented within the traditional explanatory framework of 
oscillations due to neural firing, involving hypothetical mechanisms for converting oscillation patterns 
in time to oscillation patterns in the space of an abstract parameter, such as the magnitude of the 
error during numerosity estimation. The viability of the proposal of causal influences propagating from 
the microscale of quantum phenomena to the macroscale of human behavior, needed for the first 
type of explanation, is exemplified by the phenomenon of magnetoreception in some species of birds, 
which is allegedly quantum in nature.

The question of whether quantum phenomena at the microscale in the brain play any role in influencing or even 
determining behavior at the human macroscale of experience is a controversial  one1,2. Some researchers have 
proposed that quantum models of decision making fit experimental data better than classical  models1,3, with-
out suggesting physical causality from the microscale to the to the macroscale as possible explanation for this 
 finding1,4. This avenue of research is labelled “quantum cognition”, and it is interested in applying principles and 
methods from quantum physics to the study of cognition as an abstract system, without concerning itself with 
the viability of the physical instantiation of the proposed quantum models in the brain. There are also several 
other claims about the possible existence of quantum phenomena in the brain that allegedly serve as the physical 
correlate of  consciousness5–7, collectively referred to as the “quantum brain” hypothesis, but none of them has 
earned widespread acclaim.

The standard objection to the first class of theories—those that conceptualize quantum-like phenomena 
in observed behavior as abstract models of cognitive function—is that they model phenomena with a more 
complex conceptual and mathematical apparatus, which could accidentally cover a broader spectrum of cases 
 (see1, section 4.3). For that reason, it is not clear what necessitates the use of intuitively unrealistic mathematical 
constructs to model human thought and behavior. The objection to the second class of theories is that, to the best 
of current knowledge, it is impossible to realize quantum phenomena in the hot, wet brain at macroscopic spatial 
and temporal scales far beyond the scales at which they are observable in physics  experiments8. The widely held 
assumption among researchers, therefore, is that quantum phenomena are unlikely to play any role in human 
cognition and the phenomenon of consciousness.

This article describes a reliably reproducible effect in human behavioral data which is used as an argument 
for the possibility that quantum phenomena at the microscale in the brain can manifest themselves on the mac-
roscale of human behavior. The argument is based on commonality in the mathematical modelling approaches 
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to quantum systems and neural networks and the presumed existence of a causal mechanism allowing some 
bird species to sense the orientation of Earth’s magnetic field via quantum effects occurring on the microscale.

The functional similarity between quantum systems and neural networks. Artificial neural net-
works (ANNs) are commonly regarded as idealized models of the biological neural networks in the human and 
animal brains, and recently it has been established that in some cases the mathematical formalisms describing 
specific types of neural networks and some basic aspects of the functioning of quantum systems are equivalent. 
For  example9  and10 showed that the Schrodinger equation expressed as eigenwaves in Feynman’s path-integral 
formalism and the dynamics associated with it is mathematically equivalent to a Hopfield-like associative neural 
network that can realize cognitive functions like memory, pattern recognition and recall. Neural networks of this 
type are regarded as biologically plausible, as pointed out already in the original paper proposing this specific 
 ANN11.

In this paper, John Hopfield introduces also the notion of “energy” of the global state of the network, by anal-
ogy with the energy of physical systems, and shows that the network can perform useful tasks, such as recall of a 
trained state, pattern recognition, generalization, etc., by settling into a local state of minimal energy via gradient 
descend along the energy parameter. More recent  work12 suggests that in this type of ANNs, the “quantumness” 
implied by the overlap of the mathematical apparatus describing the quantum systems and the neural network, 
emerges naturally under certain conditions, and the “energy” term in the latter corresponds to the energy term 
in the former (see  also13 as another example), i.e., the analogy spotted by Hopfield between the parameter he 
defined for his neural network and physical systems seems to be a deep one, prompting the authors  of12 to suggest 
that the physical reality itself could be a neural network at the most fundamental level of description.

If we turn this suggestion around, we could think of at least some biologically plausible neural networks, 
and even the conscious mental state in the human brain, as a quantum system. Aside from the question of the 
physical realizability of sustained quantum entangled states in the physical environment of the human brain, the 
mathematical equivalence quoted above suggests that the human brain and the conscious mental state it sustains 
can be regarded at least as a quantum-like system at an abstract level (a view espoused in general within the 
“quantum cognition” field of research), if not as a physical quantum system as understood within physics. That 
view has consequences regarding the outcomes of cognitive psychology experiments and would predict different 
outcomes than traditional cognitive psychology theories, by analogy with the distinction between classical and 
quantum effects in physics.

The most defining characteristic of “quantumness” in physics phenomena is the discreteness of the values 
that certain parameters can obtain, which also gives the name to this type of physics theories. The discreteness is 
usually characterized by wave patterns in plots of experimental data and their corresponding theoretical models, 
arising from the Schrodinger wave equation, whose solution sometimes has discrete eigenvalues. Such wave 
patterns, on the other hand, are rarely observed in cognitive psychology data, and are invariably associated with 
variations in a measure of performance in time  (see14 for a review). There are cases where oscillations in time 
are modelled with a quantum mathematical formalism, such  as15, but in those cases the authors do not make 
the claim that the cognitive processes they model are physically quantum in nature. The occurrence of a wave 
pattern would be unexpected in a measure of response times or error rates along a perceptual parameter, rather 
than in time. Such parameters could be length, size, auditory pitch, color, etc., i.e., perceptual states where the 
stimulus is experienced as the same type of percept along a gradient of different magnitudes of the same sensory 
stimulation. A wave pattern there would be unexpected within traditional cognitive models, because performance 
is expected to change monotonically with changes in the perceptual parameter, while it would arise naturally 
under the proposed assumption of quantumness of the cognitive mental state.

One should note that in order to establish the existence of a wave pattern, the perceptual parameter needs 
to be sampled at sufficiently many values of the parameter—at least 4, and preferably well over 4, which would 
allow multiple cycles of the wave pattern to be revealed.

Experimental paradigm for probing the “quantumness” of mental states. Behavioral experi-
ments typically measure accuracy and response times. Fortuitously, those two measures of performance can 
serve as analogues of the measures of position and momentum relating to physical particles. Accuracy, in para-
digms involving numerosity or its analogues, can be construed as a monotonous measure of distance in mental 
space, where distance is represented by the difference between the correct answer and the actual response, i.e., 
the magnitude of the error. Response time, in turn, indicates how long it takes for the mental state to transition 
from the initial perceptual state of observing the stimulus to the subsequent action state of pressing the but-
ton to give the response. In that way, it is a proxy measure of how long it takes to make the decision within the 
particular experimental paradigm, which is typically selection of the response among two or more alternatives. 
One can think of this process of response selection as a transition through mental space, starting at the location 
representing the initial perceptual state and ending at one of several alternative locations, representing the alter-
native choices. The time it takes to make this transition is indicative of the “energy” of the mental state expressed 
as a difference in some abstract measure of brain activity between the initial perceptual state and the final deci-
sion state, analogously to the gradient descend from a higher energy state to a local minimum in the Hopfield 
network. Because of the mathematical equivalence of the energy parameter in the Hopfield ANN framework and 
the energy parameter of quantum systems, the response times would reflect also quantum-like perceptual infor-
mation processing at the level of neural firing, if we assume no causal effects from the microscale of individual 
particles to the macroscopic scale of neural firing. If we go further and assume that the microscale of quantum 
phenomena plays a role in conscious mental activity, the response times would reflect information processing 
at the microscopic quantum scale with causal chains propagating down from the perceptual mechanisms of the 
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sense organs to the microscale constituting the perceptual experience, quantum information processing at the 
microscale constituting the decision making and conscious thought, and causal chains propagating up the spati-
otemporal scale for actuating the motor response. In summary, the magnitude of the error and the response time 
in a typical cognitive task could be proxy measures for conscious states physically realized in the brain either by 
quantum-like macroscopic neural network parameters analogous to position and momentum, or by the actual 
positions and energies/momenta of individual particles of brain matter on the microscale.

A typical numerosity estimation experimental paradigm, where participants are asked to estimate the num-
ber of objects of the same type, e.g., dots, shown on the screen, is in that way analogous to probing measures 
of position and momentum along a single spatial dimension formed by an abstract parameter. The probability 
density of finding the mental state in a specific location in that dimension, formed by the magnitude of the dif-
ference between the actual number of objects in the stimulus percept and the estimate, is given by the count of 
responses falling in that location, in the case of a free choice answer. A proxy measure of the probability density 
is the standard deviation of the responses within a range of values, in case of a continuous variable such as a 
very finely measured distance between the perceptual state and the response, and also the standard deviation of 
the response time. The standard deviation is the most appropriate proxy measure for probability density of all 
statistical momenta of a distribution, due to the fact that it is inversely proportional to the density of grouping 
of the values within a fixed interval. The mean does not reflect the density of the grouping of the values in a 
distribution, and the higher order momenta reflect finer details in the properties of a grouping, rather than the 
general property of its density. Thus, the probability density of position is given by the counts of the responses 
for each value of the differential between the actual number and the estimate, while the probability density of 
momentum is given by the counts and also by the standard deviations in the histogram of the response times, 
suitably segmented into periods with the same length.

Free choice paradigms produce unequal distribution of the counts of the responses because the correct answer 
is most likely to be selected and the probability of selection decreases monotonically with increasing distance 
from the correct answer. Equal distribution of the counts can be enforced by asking the participants to estimate 
the numerosity of the object compared to a predefined number by offering them only two choices—higher or 
lower than that number. In that case, the counts for each value of the difference between the actual number of 
dots and the target number can be counterbalanced, at the expense of being unable to estimate the probability 
density of position using the counts. However, that paradigm makes it possible to measure the probability density 
distribution of the “energy” of the mental state by plotting the standard deviation of the response times associated 
with each value of the difference along the abstract dimension.

Eight experiments employing this type of experimental paradigm are presented in this article. Four of them 
(Exp I, Exp II, Exp III and Exp IV) were specifically designed for the purpose of testing the above hypothesis 
and performed by the author. The other four—OS Exp  I16, OS Exp  II17, OS Exp  III18 and OS Exp  IV19—were 
designed and performed for other purposes by other researchers, who made the data freely available under the 
Open Science Framework for data sharing and collaboration, but fit the requirements for an experimental para-
digm allowing the observation of patterns in a behavioral measure along a single dimension, as outlined above.

All experiments involve a task of estimating the number of dots presented on the screen. Although the task 
was different in each of the experiments, the results are comparable for the purpose of testing the hypothesis 
presented above, because they all allow calculating the standard deviations of the response times for a range of 
consecutive differentials. The paradigms vary in whether the response is free entry of a number or comparison 
against a target number and the ranges of numerosity of the stimuli, resulting in different distributions of the 
numbers of trials and the response times associated with each numerosity (see Table 1, for more details on the 
methods see Appendix A).

The OSF experiments are an opportunistic sample obtained by searching by keywords in online data reposi-
tories, such as OSF.io, figshare, Mendeley, etc. In total 22 datasets were identified and processed using the same 
method, and 4 of them were found to have an experimental paradigm sufficiently similar to those used by the 
author. No dataset was excluded from consideration because of absence of the reported wave-like pattern effect.

Ethics declaration. Ethics approval was obtained for all four experiments performed by the author from 
the ethics committee at Coventry University, United Kingdom. The reference numbers of the approvals are 
P36680 for experiment 1, P48127 for experiments 2 and 3, and P88672 for experiment 4. The research was 
conducted according to the principles expressed in the Declaration of Helsinki. Informed consent was obtained 
from each participant at the beginning of the experimental session.

Results
In all eight experiments the pattern of the standard deviations of the response times when plotted by the differ-
ence between the actual numerosity of the dots in the visual stimulus and the estimated numerosity (or the target 
number in some of the paradigms) exhibits an ostensible wave-like shape (see panel A in Fig. 1, which shows the 
values of the standard deviations as grey dots and an interpolation of the intermediate values with a univariate 
smoothing spline of degree 3, as defined in the SciPy package for Python). What is more, there is a close match 
between the two arms of the plot—the pattern for negative differences and the pattern for positive differences 
(panel D in Fig. 1). The closeness of the match was evaluated numerically by correlating the interpolated plots 
for the two arms using Pearson product-moment correlation, as defined in the NumPy package for Python, on 
a segmentation of each arm into 100 sample points.

As shown in panels D in Fig. 1, the correlations between the patterns in the two arms of the plots are moderate 
to high for the first 9 datasets marked in orange, ranging from r = 0.285 to r = 0.828, mean = 0.490 (except in OS 
Exp I, which has r = 0.118 due to misalignment of the peaks), and indicating a close match between the two arms 
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of the plots. The last 3 datasets marked in green are from atypical populations and the match between the two 
arms of the plot is weaker (r ranging between 0.095 and 0.223, mean = 0.160). Note that the measurement of RT 
from each trial goes into one of the data points in the plot, meaning that the aggregate value in each data point is a 
result of events occurring independently from each other and from the events in the other data points. (It should 
be noted that there are some differences in the data processing methods used for the eight datasets—see Table 2).

The response time measures have been calculated with outliers > 1.96 standard deviations from the global 
or the participant mean removed, except in two experiments. This eliminates only a small number of trials and 
makes the shapes cleaner. In two of the experiments incorrect responses are also removed from the calculations, 
resulting in the removal of substantially larger proportions of all trials.

In Exp I, OS Exp I, OS Exp II and OS Exp III the counts are unbalanced, with more responses in the difficult 
conditions and fewer responses in the easier conditions, resulting in a peaked (bipartite exponential) curve. In 
the other experiments, the responses are closely balanced due to the counterbalancing of the conditions, with 
somewhat fewer responses in the difficult conditions in the cases of selection of only the correct responses.

In Exp I, OS Exp I and OS Exp III the responses are open-ended, i.e., participants are entering a number, while 
in the other experiments they are comparing the numerosity of the dots against a target number and making a 
binary choice. In OS Exp I, OS Exp III and OS Exp IV the response times are very slow (over 2000ms).

OS Exp IV involves five different types of populations. Datasets 1 and 4 are from typical populations (Western 
adults and children respectively) as all other experiments reported here, while datasets 2,3 and 5 are from atypical 
populations (indigenous people, preschoolers and dyscalculics respectively).

The r values in panel C are calculated from the actual values in the two arms of the plot and are displayed 
for comparison. The mean r value for the means is 0.521, ranging from − 0.041 to 0.923, suggesting that they 
are unreliable. The high r values in all experiments except the last 3 are mainly due to the peaked shape of the 
distribution.

In addition to the correlation analysis, computational modelling was performed to assess the probability of 
obtaining the observed correlations from random distributions of the data points (the values for the standard 
deviations in panel A). To that end, the data for the 8 plots in panels A of Fig. 1 were normalized by linear scaling 
within the interval [0,1] and random distributions for the data points of each plot were generated drawn from 
a normal distribution with mean = 0.44, SD = 0.27, which are the parameters of the aggregate set of all data 
points from the 8 plots. Each random distribution was interpolated in the same way as for the actual plots in 
panels D, and the correlation between the two arms was computed with the midpoint separating the two arm set 
at 0. This procedure was repeated 100,000 times and the proportion of correlations higher than the actual cor-
relation displayed in panel D was calculated as a percentage of all 100,000 obtained values. The resulting values 
can be thought of as the probability of obtaining the hypothesized effect of closely matched wave-like patterns, 
quantified via the correlation values, by chance. For the first 9 datasets, where the effect is expected to be pre-
sent, the probabilities calculated with this procedure were: 0.00402, 0.0514, 0.00077, 0.17541, 0.4144, 0.06861, 
0.27772, 0.30994, 0.01718. For the last 3 datasets, where the effect is expected to be absent, the probabilities were: 
0.45863, 0.36414, 0.38227. Finally, a two-sample equal variance (homoscedastic) two-tailed T-test with alpha 
level of 0.05 was performed on the obtained probability values, showing that the two types of simulated datasets 
differ significantly in the probability of obtaining the wave-like pattern by chance (t(10) = − 2.740, p = 0.021). 
This result reinforces the conclusion from the correlation analysis that the regularity of the patterns in the first 
9 datasets is unlikely to be accidental. (The code for the computational modelling procedure is available in the 
“Data availability” section).

Table 1.  Main differences in the methods of the eight experiments.

Experiment Response type Numerosity range

1. Exp I Free entry (three-choice) 40–69

2. Exp II Two-choice 40–69

3. Exp III Two-choice 40–69

4. Exp IV Two-choice 40–69

5. OS Exp I Free entry (knob) 10–99

6. OS Exp II Two-choice 30–170

7. OS Exp III Free entry (keyboard) 10–20

8. OS Exp IV Two-choice 10–44

 Counts distribution Average response time (ms) STD distribution

1. Bipartite exponential 874 Flat

2. Flat 890 Peaked

3. Flat 877 Peaked

4. Flat 1745 Peaked

5. Bell shaped 2312 Flat

6. Bell shaped 998 Flat

7. Bell shaped 5611 Flat

8. Flat 2042 Peaked
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Figure 1.  (Top to bottom, then left to right) Panels for the Standard Deviations (A), Counts (B), Averages (C) 
and superimposed Standard Deviations (D) of the response times (in milliseconds, vertical axes) plotted by the 
difference between the actual number of dots and the estimate (horizontal axes) in the eight experiments. Panel 
(D) shows the interpolated standard deviations for the two arms (positive [blue] and negative [red] differences, 
interpolated with resolution 100 points) and the correlation coefficient for the two arms of the plot. The grey line 
near the middle in panels A indicates the axis of symmetry used to separate the two arms. The r values in panels 
D in the first 9 plots (orange) are mostly moderate to high due to the symmetry of the plot, with the exception of 
OS Exp I where the wave-like patterns are somewhat misaligned, while the r values in the last 3 plots (green) are 
low due to asymmetry of the patterns.
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Discussion
The results from the eight experiments presented in this article suggest the existence of regular wave-like pat-
terns in some measures of performance when plotted along an abstract dimension. This artificial dimension is 
constructed from multiple points that sample a parameter attributed to different instantiations of the same mental 
state, in this case different perceptual states of numerosity or, more generally, magnitude.

The existence of wave-like patterns in measures of performance and measures of brain activity is unsurprising 
and is well established. There are perceptual cycles unfolding in time, established with different paradigms  (see14, 
 also20  and21), typically ascribed to cyclical brain activity—neural oscillations, i.e., temporal cycles of variable 
neural firing rates. The surprising finding in the presented set of experiments is that the wave-like patterns occur 
along an abstract parameter dimension, rather than a temporal dimension, where they can readily be explained 
by neural oscillations. While it is possible to construct an explanation that proposes a mechanism for translating 
temporal neural oscillations into oscillations in abstract space, the physical realizability of such a mechanism in 
the noisy system of neural firing in the human brain remains questionable.

A possible mechanism for converting temporal oscillations into variations in an abstract parameter of the 
mental state is offered by the phenomenon of travelling waves discovered in the rat neocortex (see, e.g.22), the cat 
 neocortex23 and even in human  cortex24. To that end, it can be hypothesized that the temporal oscillations pass 
through premotor cortex and affect the execution of the finger movement during the response. More specifically, 
the phase of the oscillatory activity would disrupt or focus the neural firing triggering the execution of the finger 
movement, leading to less consistent or more consistent timings of the movement. The second assumption that 
needs to be made in this construct is that conceptual states representing different magnitude are somehow topo-
logically mapped in the cortex. More specifically, the neural representations of gradually increasing magnitude 
need to form a gradient along some cortical area or in the state space of a parameter governing the triggering of 
neural firing. That mechanism needs to perform reliably in order to convert temporal oscillatory patterns into 
variations in an abstract parameter governing finger movements.

Another mechanism that could explain these wave-like patterns can be based on the phenomenon of oscil-
lations due to the activity of grid cells  (see25). The grid cells have oscillatory patterns that depend on an abstract 
parameter, such as regularly spaced locations in physical space, and are a good example of how temporal oscil-
latory phase can be converted to abstract parameter phase and vice versa. The oscillatory phenomenon has been 
detected also in abstract space in a paradigm of comparing the lengths of two line segments, similar to those 
presented in this article  (see26). A computational model study has demonstrated that grid cells arise naturally 
in this type of  tasks27.

These explanations concern brain mechanisms and activity on the macroscopic scale. They can explain the 
finding of wave-like patterns in abstract mental space presented in this article with some additional assump-
tions. The advantage of this approach is that it does not assume any additional cognitive mechanisms beyond the 
standard ones used in the literature on cognitive processes in the brain. However, if we admit the possibility of 
either quantum-like or physically quantum information processing in the brain, then the conversion of temporal 
oscillations into oscillations in an abstract parameter is resolved naturally through the relation between the wave 
patterns in the probability density of position and momentum, known from quantum physics. The main outstand-
ing issue within this framework is the possibility of causal influences going across 10 orders of magnitude on the 
spatial scale from the domain of individual particles with sizes on the order of picometres ( 10−12 m) to the size 
of brain structures on the order of centimeters ( 10−2 m). To resolve it, we need to assume that the measurements 
of macroscopic events, such as finger movements to press a button, are causally connected to phenomena at the 

Table 2.  Main differences in the data analysis for the eight experiments.

Experiment Number of valid trials Trials per condition Mean # of trials per condition

1. Exp I 8604 30–690 278

2. Exp II 7248 165–295 234

3. Exp III 9312 240–470 372

4. Exp IV 5167 210–290 246

5. OS Exp I 934 12–86 37

6. OS Exp II 2450 30–230 129

7. OS Exp III 6630 25–1100 390

8. OS Exp IV 2040–5836 100–300 120–278

 Outliers ignored at Error responses ignored Percent trials ignored (%)

1. 1.96 std (global) N/A 4.8

2. 1.96 std (within participant) Yes 28.5

3. 1.96 std (within participant) Yes 30

4. 1.96 std (global) No 5.5

5. 3 std (global) N/A 2.5

6. 1.96 std (global) No 4.8

7. 1.96 std (global) N/A 4.7

8. None No None
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microscopic scale, such as the probability of finding a particle (an atom, or maybe even an atomic nucleus or an 
electron) in a particular state. If such mechanism exists, then it would be conceivable that the pattern of prob-
ability density in the particle’s configuration space (or that of an entangled ensemble of particles), manifests itself 
in a similar, related pattern in the measurements of macroscopic behavior. More specifically, the wave-like pattern 
of variability of the response times in the abstract space of a single-parameter magnitude of the perceived stimuli, 
which is analogous to probability density, could be a manifestation of the wave-like distribution of probability 
density of position or momentum, or any other parameter in the configuration space of the state of a particle, 
at the microscopic scale. That hypothesis, in fact, does not preclude the existence of the classical mechanisms 
presented above; they could still be present in the brain, but in this case they would merely be intermediary links 
in the causal chain of physical interactions from the microscale to the macroscale.

The feasibility of a mechanism relating properties on the microscale to behavior on the macroscale has 
traditionally been questioned by physicists, given the vast difference in orders of magnitude between those 
two scales—approx. 1010 or 109 . However, there is an example of such a mechanism that has been discovered 
recently, namely, magnetic field sensing in some birds’ brains, where a quantum effect on the microscale affects 
the behavior of birds and allows them to navigate in space  (see28). That yields credibility to the idea that similar 
“sensing” could be occurring in the human brain when trying to evaluate a complex perceptual stimulus in a 
challenging task. In this case, the sensed property would not be the orientation of the magnetic field (which is 
in fact converted to relative probability of two particular chemical reactions taking place in the bird’s brain), but 
the landscape of parameter space related to the microscopic physical correlates of magnitude and/or effort on 
the microscale in the human brain.

Data availability
The datasets generated and/or analysed during the current study are available in the OSF.io repository, https:// 
osf. io/ n5feg/, as well as the Python code for producing the plots and the computational modelling with random 
distributions of the data points.
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