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A B S T R A C T   

Depression is a widespread disease with a high economic burden and a complex pathophysiology disease that is 
still not wholly clarified, not to mention it usually is associated as a risk factor for absenteeism at work and 
suicide. Just 50% of patients with depression are diagnosed in primary care, and only 15% receive treatment. 
Stigmatization, the coexistence of somatic symptoms, and the need to remember signs in the past two weeks can 
contribute to explaining this situation. In this context, tools that can serve as diagnostic screening are of great 
value, as they can reduce the number of undiagnosed patients. Besides, Artificial Intelligence (AI) has enabled 
several fruitful applications in medicine, particularly in psychiatry. This study aims to evaluate the performance 
of Machine Learning (ML) algorithms in the detection of depressive patients from the clinical, laboratory, and 
sociodemographic data obtained from the Brazilian National Network for Research on Cardiovascular Diseases 
from June 2016 to July 2018. The results obtained are promising. In one of them, Random Forests, the accuracy, 
sensibility, and area under the receiver operating characteristic curve were, respectively, 0.89, 0.90, and 0.87.   

1. Introduction 

Depression is a ubiquitous disease, with an estimated prevalence of 
more than 264 million (Global Burden of Disease Study, 2018). The 
economic burden is equally high. In Canada, for example, it was esti
mated at 12 billion a year (Tanner et al., 2019). It is a complex patho
physiology disease that is still not completely clarified, which appears 
twice as often in women, and usually associated as a risk factor for 
absenteeism at work and suicide (Kessler et al., 2003; Park and Zarate, 
2019). According to the Diagnostic and Statistical Manual of Mental 
Disorders, the diagnosis of depression consists of presence of 5 out of 9 
symptoms for two weeks. Also, one of these symptoms must be 
depressed mood and loss of interest or pleasure in activities of daily life 
(DSM-V, 2013). The treatment of depression involves the use of different 
methods, such as the use of antidepressants and psychotherapy; never
theless, many individuals do not receive adequate treatment, simply 

because they remain undiagnosed (Razavi et al., 2020). A meta-analysis 
has revealed that, in primary care, only 50% of patients with depression 
are diagnosed, and only 15% obtain treatment (Mitchell et al., 2009). 
Some factors can contribute to explaining this situation. Stigmatization 
is one of them and plays an important role (Gaum et al., 2019). Also, 
somatic symptoms, such as fatigue, sleeping problems, headache, and 
backache, usually accompany depressive episodes, which can confound 
the diagnosis (Mboya et al., 2020). On the other hand, the patient must 
remember the frequency of symptoms in the past two weeks. 

In this context, tools that can help in diagnostic screening are of great 
value, as they can contribute to reducing the number of undiagnosed 
patients. Besides, Artificial Intelligence (AI) has enabled several suc
cessful applications in medicine, particularly in psychiatry. In essence, 
AI is the combination of sophisticated mathematical models and 
computation, which results in the development of sophisticated algo
rithms capable of emulating human intelligence (Souza Filho et al., 
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2019). A systematic review, for example, evaluated the use of Machine 
Learning (ML), an AI subset, in trauma-related disorders, such as Acute 
Stress Disorder and Posttraumatic Stress Disorder. The clinical and 
etiological heterogeneity of these diseases favors the use of these tools 
and brings challenges inherent to its use in clinical practice for the 
benefit of patients (Ramos-Lima et al., 2020). In another study, an ML 
algorithm was used to investigate whether transferred entropy, which 
represents the information flow extracted from electroencephalography 
in resting-state, could be a predictor of electroconvulsive therapy 
response in patients who suffer from disorder schizoaffective or 
schizophrenia. The authors concluded that patients with higher effective 
connectivity in frontal areas might have a better answer to electrocon
vulsive therapy (Min et al., 2019). This study aims to evaluate the per
formance of ML algorithms in the detection of depressive patients from 
the clinical, laboratory, and sociodemographic data obtained from the 
National Network for Research on Cardiovascular Diseases from June 
2016 to July 2018. The idea is to use this tool to make a screening of 
patients, which can contribute to reducing the number of undiagnosed 
cases. 

2. Methods 

We analyzed the data of the Brazilian National Cardiovascular Dis
ease Research Network during the period from June of 2016 to July of 
2018. It was a randomized clinical trial 1:1 using clusters of fixed size. 
The study was open for intervention and blinded for evaluation designed 
to analyze the impact of the implantation of a telecardiology system in 
reducing referrals from primary care patients to cardiologists comparing 
units that received this tool with others without such technological 
incorporation. The study protocol was approved and monitored by 
Instituto Nacional de Cardiologia in Brazil. All patients signed informed 
written consent. 

2.1. Randomization and sample size 

A computer program developed from the “R” statistical software to 
perform the randomization. The blocks of randomization and conse
quent allocation of units were established according to the chronological 
entry in the study (R Core Team, 2018). The sample size calculation was 
structured based on a randomized cluster trial. It required 10-fixed-sized 
clusters of 50 patients in each group for an absolute reduction in referral 
to a specialist of 30% considering the power of 80% and alpha of 0.05 
with 90 days follow-up. 

2.2. Allocation units 

The allocation units were 20 primary care units in the city of Rio de 
Janeiro, in Brazil. The criteria for inclusion and choice of units were to 
have a Medical Residency Program: all of them with medical precep
torship and operational flows, assuming that there is the same standard 
medical knowledge and ensuring homogeneity between the groups since 
the units were subjected to randomization (and not the patients). 
Therefore, both groups can be considered standardized in training and 
quality care. 

2.3. Inclusion and exclusion criteria 

Inclusion criteria were patients seen in primary care units with a 
referral for electrocardiogram (EKG) (for any indication), over 18 years 
old, and who agreed to sign the Informed Consent Form. We excluded 
people with no cognitive ability or literacy to understand the ques
tionnaires and also patients who did not provide redundant contact for 
follow-up because they were identified as more challenging to follow. 

2.4. Experimental and control group 

Standard 12-lead EKGs were performed by the local primary care 
professional, using digital electrocardiographs by Tecnologia Eletrônica 
Brasileira model ECGPC (São Paulo, Brazil). Exams were performed in 
rest, with registration for 10 s, at a rate of 25 mm/s. Specific software 
was developed in-house, capable of capturing an EKG tracing for im
mediate upload and the patient’s self-declared clinical history, to the 
TNMG analysis center via the internet. The clinical information, EKGs 
tracings, and reports were stored in a customized database. EKGs were 
interpreted by a team of trained cardiologists using standardized criteria 
to generate an EKG report, which was done as free text. The experi
mental group had EKG performed by a member of the research team in a 
particular device for the study. The examination was carried out using a 
system called Sigdiagnosis, developed by Universidade Federal de Minas 
Gerais (Marino et al., 2016). A specialist by remote access analyzed the 
EKG. Through this system, it was possible to request a teleconsultation 
with a cardiologist. The electrocardiographic exams were delivered to 
the respective unit with a report accomplished by a cardiologist within a 
maximum period of 24 h. In the control group, the EKG was performed 
by a local technician regularly on devices from the unit itself that does 
not issue a report. The trace of EKG without analysis was delivered 
immediately to the patient following the standard flow of the primary 
unit care. 

2.5. Database 

The patients underwent clinical evaluation documented in the clin
ical research form (CRF) and registered in a database developed by the 
Instituto Nacional de Cardiologia, being followed up by telephone 
contact and review of medical records. All data collected were included 
a posteriori by two blinded and independent researchers in an electronic 
CRF. Study data were stored and managed using Research Electronic 
Data Capture (REDCap) hosted at Instituto Nacional de Cardiologia 
(Harris et al., 2009). REDCap is a secure, web-based software platform 
designed to support data capture for research studies, providing: (a) an 
intuitive interface for validated data capture; (b) auditing trails for 
tracking data manipulation and exporting procedures; (c) automatic 
export procedures for seamless data downloads to standard statistical 
packages; and (d) methods for data integration and interoperability with 
external resources (Harris et al., 2019). A second blind and independent 
researcher adjudicated the data, check with the patient’s medical 
records. 

2.6. Features 

Our study used only clinical-laboratory and sociodemographic data 
obtained during the patient’s follow-up. Table 1 shows the considered 
information from 971 patients (881 non-depressive and 90 with 
depression). The analysis excluded 29 patients due to missing data. The 
attributes used as inputs of the algorithms were gender, age, educational 
level, household income, smoking, alcoholism, illicit drug-using, phys
ical activity, dyslipidemia, hypertension, and diabetes. The categorical 
variables were transformed using a one-hot-encoding strategy, and the 
attributes were normalized. Therefore, a matrix with 34 columns and 
971 rows was obtained. The last column corresponds to the label indi
cating whether the patient is not depressed (0) or is depressed (1). The 
diagnosis of depression was according to the DSM V. All data were 
anonymized, as suggested in the General Data Protection Regulation 
(GDPR, 2016). 

2.7. ML algorithms 

ML models used to perform the classification were Logistic Regres
sion (LR), K-Nearest-Neighbors (KNN), Classification and Regression 
Tree (CART), AdaBoost (AB), Gradient Boosting (GB), Extreme Gradient 
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Boosting (XGB), Random Forests (RF) and Support Vector Machine 
(SVM) (Verhulst, 1845; Fix and Hodges, 1951; Breiman, 2001; Fried
man, 2002; Ho, 1995; Chen and Guestrin, 2016; Cortes and Vapnik, 
1995). 

2.8. Cross-validation 

K-fold cross-validation is a useful technique to obtain a robust esti
mate of the generalizability capability of an ML model. First of all, the 
database is divided into k equally sized parts (folds). After that, k - 1 
folds are used for training of the ML models, and the remaining part is 
employed as a validation set. The process is repeated until it is ensured 
that all parts integrate the validation set just once (James et al., 2015; 
Stone, 1974). Therefore, all patients in the database are used for training 
the models and appear in the test set only once. Our study used 10-fold 
cross-validation to analyze the generalizability and the mean of the area 
under the curve receiver operating characteristic (AUROC) as a perfor
mance metric. Sanderson et al. used this technique in their ML study, 
which showed promising results in predicting death by suicide using 
administrative health care system data (Sanderson et al., 2020). 

2.9. Synthetic Minority Oversampling Technique (SMOTE) 

The database used in this study is unbalanced. It means that there is 
an imbalance between the number of patients diagnosed with or without 
depression. This technique can contribute to the poor performance of 

ML models and, therefore, to reduce the imbalance, it was necessary to 
employ the Synthetic Minority Oversampling Technique (SMOTE). The 
idea is to generate synthetic examples to over-sampling the minority 
class. The process of obtaining the new synthetic samples considers the 
neighborhood relations between the elements of this group (k minority 
class nearest neighbors). New data is produced by interpolation among 
several minority class instances that are within a defined neighborhood 
without any change in the majority class (Chawla et al., 2002; Fernández 
et al., 2018). After performing this technique, 107 new samples (mi
nority class) were generated, and the new dataset composed of 1078 
samples. SMOTE was used successfully by Rahman et al. to increase the 
proportion of autism spectrum disorder (ASD) cases fivefold in a study 
that evaluated some ML models and their performance in predicting ASD 
early in life (Rahman et al., 2020). The code was implemented in the 
Python 3 programming language (van Rossum, 1993; Pedregosa et al., 
2011). 

3. Results 

From Tables 1 and 2, we can see that 64% of the patients are men, 
35% completed elementary school, 41% receive less than one minimum 
wage, 57% are non-smokers, 37% are alcoholic, 4% are users of illicit 
drugs, 28% are hypertensive, and 21% are diabetic. The average age is 
57.67 ( ±14.47). Table 3 shows that four ML models had an average area 
under the receiver operator characteristic curve (AUROC) greater than 
equal to 0.70. RF and KNN have obtained average AUROC equal to 0.87 
and 0.81, respectively. AdaBoost had the worst performance (average 
AUROC = 0.58). The computational times spent by each model during 
training were less than 2 s. From data variability in average AUROC, it is 
essential to note that the smallest standard deviations were observed in 
the KNN, RF, and XGB models (0.07, 0.08, and 0.11, respectively). At the 
same time, the highest values were found in LR (0.19), AB (0.16), and 
CART (0.14). The sensitivity (recall) and accuracy were greater than 0.8 
on all models, except for AdaBoost. RF had a recall of 0.9 and an ac
curacy of 0.89. RF, KNN, and XGB had F1-measure greater than or equal 
to 0.85. 

4. Discussion 

The results showed that RF achieved an excellent performance. The 
sensitivity (recall) and precision were 0.90 and 0.88, respectively. Thus, 
it is possible to use this model as a useful decision-making support tool. 
It can point out possible patients with depression and contribute to 
reducing the number of undiagnosed cases. In this context, ML tools 
seem to have enormous potential for application in the field of mental 
health illnesses. Another successful example employed an ensemble ML 
to predict adult-onset internalizing disorders, namely, generalized anx
iety disorder, panic disorder, social phobia, depression, and mania). The 
AUROC of super learner ensembles ranged from 0.76 (depression) to 
0.83 (mania) (Rosellini et al., 2020). The determination of the best 
models took into consideration not only the AUROC value but also the 
standard deviation perceived. As a result, RF emerged as the best model, 
followed by XGB. The performance of the RF was also observed in a 
study in which it was used to foretell future mental healthcare con
sumption in patients with non-affective psychosis. AUROC was 0.71 
(Kwakernaak et al., 2020). On the other hand, XGB had the best accu
racy (79%) in predicting Korean adolescents of high-risk suicide (Jung 
et al., 2019). On the other hand, when comparing the performance of the 
RF with other models of ML used in psychiatry, we can realize that the 
results obtained in the scope of this work indicate that the algorithm 
performed well. 

Nevertheless, it is important mentioning that the performance of a 
model may vary depending on different problems. SVM (our second 
worst model) was the best in a study in which it was used to verify if an 
outcome of escitalopram treatment can be foretold from electroen
cephalographic data on patients who had completed eight weeks of 

Table 1 
List of attributes.  

Categorical patients 
characteristic 

Categories Meaning 

Gender 0 Female 
1 Male 

Educational Level 1 Illiterate 
2 Complete elementary school 
3 Incomplete elementary school 
4 Complete high school 
5 Incomplete high school 
6 Complete higher school 
7 Incomplete higher school 

Household income 1 Less than or equal to 1 minimum wage 
2 Greater than 1 and less than or equal to 2 

minimum wages 
3 Greater than 2 and less than or equal to 5 

minimum wages 
4 Greater than 5 and less than or equal to 

10 minimum wages 
5 Greater than 10 minimum wages 

Smoking 1 Current smoker 
2 Ex-smoker 
3 No 

Alcoholism 1 Yes 
2 No 

Illicit drug using 1 Yes 
2 No 

Physical activity 1 Light 
2 Moderate 
3 Intense 
4 Yesa 

5 No 

Dyslipidemia 1 Yes 
2 No 

Hypertension 1 Yes 
2 No 

Diabetes 1 Yes 
2 No  

a Unknown frequency. 
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treatment for depression. In this study, SVM achieved high accuracy 
(82.4%), specificity (79.2%), and sensitivity (85.5%) (Zhdanov et al., 
2020). In addition to the best performance achieved by RF, KNN and 
XGB, it is worth mentioning that this study only made use of data that is 
very common in the physician’s routine and which are usually easily 
obtained from electronic health records. 

The anamnesis and physical examination provide most of the 
required information. Only two attributes (dyslipidemia and diabetes) 
require diagnosis through blood tests. This scenario favors the use of the 
models developed here as well as the small number of attributes needed 
to run the algorithms. In this context, it is essential to highlight a work 
by Kuang et al. that used Bayesian networks to assess the predictive 
capacity of heart rate variability in the diagnosis of depression. The 
results obtained were 86.4% accuracy, 89.5% sensitivity, and 84.2% 
specificity (Kuang et al., 2017). Therefore, attributes of different natures 
can be used to provide the diagnosis of depression using ML models 
successfully. This situation receives a contribution from the systemic 
nature of the disease since the existence of any mental stress can modify 
the central and peripheral nervous systems physiology and biochem
istry. As a result, it makes depression a psychological disorder that af
fects the body as a whole (Noyan, 2015), not to mention the relevant 
contribution of environmental factors. Niedhammer and cols, for 
instance, protruded the role of psychosocial work factors in depression 
(Niedhammer et al., 2020). 

It is important to emphasize that tools such as the one developed in 
this study must be inserted in a context of support to the decision- 
making process and do not propose to make any professional substitu
tion. Instead, what is proposed is to redesign of the modus operandi of 

the health work process, as well as to expand medical skills (Souza Filho 
et al., 2019). Nevertheless, as pointed out by Schwenk, we must keep the 
focus on the needs of patients and the protection of the sacred covenant 
between doctors and patients (Schwenk, 2020). 

On the other hand, we emphasize that the tool is most useful in 
carrying out screening patients in primary care. Depression’s diagnosis 
is prerogative of the doctor, and the tool should not be used, in our 
reading, for this purpose. It does not prevent the existence of false 
positives/negatives since they are probabilistic mathematical- 
computational models. Therefore, improving the ML model’s perfor
mance is an objective to be pursued due to the associated economic 
burden. A way to achieve this goal is to carry out a continuous 
improvement process: it is essential to acquire new data collected and 
processed correctly - which will be used as input for training and testing 
the models (Souza Filho et al., 2019). It is also essential to assess the 
external generalization of the model in other contexts, also considering 
multicenter data. 

Also, the results obtained by the model developed here do not allow 
quantifying the magnitude of the importance of each variable in the 
classification process. Besides, Engel et al. point out that dimensions of 
well-being and quality of life can be affected by depression even though 
in different magnitudes. In this work’s scope, only the educational 
background and income were used, both of which are related to the 
quality of life and well-being (Engel et al., 2018). On the other hand, 
Puterman et al. developed some ML models aiming to predict the mor
tality of a cohort containing 13,611 adults with ages ranging from 52 to 
104 years. A total of 57 factors with different natures (economic, 
behavioral, social, and psychological) were evaluated. They showed that 

Table 2 
Overview of patient characteristics and frequency.  

Categorical patients characteristic Categories N % – –  Scale 

Gender 0 345 0.36    Binary 
1 626 0.64    

Educational Level 1 37 0.04    Categorical 
2 343 0.35    
3 178 0.18    
4 103 0.10    
5 228 0.24    
6 45 0.05    
7 37 0.04    

Household income 1 399 0.41    Categorical 
2 357 0.37    
3 201 0.21    
4 13 0.01    
5 1 0.00a    

Smoking 1 135 0.14    Categorical 
2 281 0.29    
3 555 0.57    

Alcoholism 1 356 0.37    Categorical 
2 615 0.63    

Illicit drug using 1 37 0.04    Categorical 
2 934 0.96    

Physical activity 1 174 0.18    Categorical 
2 107 0.11    
3 19 0.01    
4 37 0.03    
5 634 0.65    

Dyslipidemia 1 212 0.22    Categorical 
2 759 0.78    

Hypertension 1 702 0.72    Categorical 
2 269 0.28    

Diabetes 1 202 0.21    Categorical 
2 769 0.79    

Numerical patients characteristic Mean  SD Median IQR Range Scale 
Age 57.67  14.47 59.00 20.00 75.00 Years 

SD: Standard deviation; IQR: Inter-quartile range. 
a The value without rounding is 0.00103. 
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in addition to traditional risk factors, such as physical inactivity, 
smoking, and alcohol consumption, other variables also played an 
important role in mortality, such as recent financial difficulties, history 
of unemployment, childhood adversities, and affective negativity 
(Puterman et al., 2020). Thus, we believe that ML models can, many 
times, bring a broader view under specific issues. However, it is essential 
to have data representative of the phenomenon to be studied. In this 
context, in the scope of the work developed here, related variables could 
also serve as inputs for ML models, bring improvements in the results 
obtained and, consequently, increase the performance of the model and 
bring some valuable insight into the decision-making process. 

4.1. Limitations 

For limitations, it is crucial to put the results obtained herein 
perspective. The computational execution times spent by ML models 
favor its use; however, the need to obtain information such as educa
tional level and household income brings with it some challenges. These 
are variables that the values can vary a lot depending on the region or 
country considered. The World Population Review showed that Brazil, 
for instance, has a median household income of $ 7.522, which corre
sponds to 30%, 17%, and 24% of the median household income in 
Finland, United States of America, and France respectively (Word Pop
ulation Review, 2020). Besides, not all patients feel comfortable 
providing personal information, such as income, and may even lie about 
their values. This behavior is influenced by both non-economic and 
economic aspects (Cappelen et al., 2013). In contrast, it is important to 
note that the information used in ML models was acquired retrospec
tively at 20 primary care units. All of these units are inserted in the same 
geographic region (Rio de Janeiro), which can be a limiting factor 
regarding the generalization capacity for other regions with a different 
profile. Another point is that we did not include other variables in the 
analysis (for example, related to mental elements). This inclusion can be 

quite intriguing and increase the performance of the models. Thus, we 
understand that future work in this direction can bring additional clar
ifications on the subject. In addition, we also believe that future research 
ought to be conducted to assess a possible excess of psychiatric consul
tations and the rate of recovery from undetected cases. 

5. Conclusions 

Our findings underlined insight that some ML models can be useful in 
detecting depressed patients from sociodemographic, clinical, and lab
oratory data common in clinical practice. RF, KNN and XGB were the 
algorithms that had the best performances. From a treatment perspec
tive, it represents a new tool for screening, which can assist in reducing 
the number of undiagnosed cases of this disease as well as facilitate as 
early treatment onset. 
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RF 0.90 0.03 1.46 RF 0.89 0.03 1.52 
KNN 0.83 0.04 0.11 KNN 0.85 0.04 0.12 
SVM 0.80 0.19 0.31 SVM 0.73 0.23 0.30  

Model Accuracy SD Time (s) 

LR 0.80 0.19 0.41 
CART 0.80 0.05 0.07 
AB 0.78 0.18 0.88 
GB 0.82 0.12 1.50 
XGB 0.86 0.05 1.90 
RF 0.89 0.03 1.76 
KNN 0.83 0.04 0.13 
SVM 0.80 0.19 0.38 

Legend: LR: Logistic Regression; CART: Classification and Regression Tree; AB: 
Adaptive Boosting; GB: Gradient Boosting; XGB: Extreme Gradient Boosting; RF: 
Random Forests; KNN: K-Nearest-Neighbors; SVM: Support Vector Machine; SD: 
Standard Deviation; F1: F1-measure; AUROC: Area Under the Receiver Oper
ating Characteristics. 
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