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Abstract
Antidepressant treatments enhance plasticity and increase neurogenesis in the adult brain, but it
has been unclear how these effects influence mood. We propose that like environmental
enrichment and exercise, antidepressant treatments enhance adaptability by increasing structural
variability within the nervous system at many levels, from proliferating precursors to immature
synaptic contacts. Conversely, sensory deprivation and chronic stress reduce this structural
variability. Activity-dependent competition within the mood-related circuits, guided by
rehabilitation, then selects for the survival and stabilization of those structures that best represent
the internal or external milieu. Increased variability together with competition-mediated selection
facilitates normal function, such as pattern separation within the dentate gyrus and other mood-
related circuits, thereby enhancing adaptability towards novel experiences.
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Neuronal plasticity: growth and change
The extrinsic and intrinsic milieu becomes represented in the structure and function of
neuronal networks during development through neuronal plasticity. In adulthood, this
representation is continuously optimized and modulated through plasticity and learning [1].
Plasticity occurs at several levels, from neurogenesis to the adjustment of synaptic weights,
and modulates both the structure and function of neuronal networks (Figure 1). Changes in
function of the nervous system are essentially always based on a structural change at some
level (neuronal, synaptic, protein, or genomic structure), and it is therefore difficult to make
clear distinctions between functional and structural plasticity.

Plasticity can be conceptualized as two distinct processes. First, structural variability is
generated through the overproduction of immature neuronal structures, which occurs at
many levels from new-born neurons to the outgrowth of filopodia (Figure 1). Second,
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selective stabilization among the overproduced structures retains those that best represent
the internal or external milieu [2]. Structural variability may be stochastic, although it may
also be genetically tuned, but selection is an active process driven by neuronal activity that
reflects both extrinsic and intrinsic stimuli. Activity-dependent selection guides the
stabilization of functionally relevant neurons and connections by utilizing genes involved in
survival and synaptogenesis, or it eliminates weakly or incoherently active structures
through the use of genes that underlie apoptosis and pruning [1,3]. The elimination of
weakly active neurons and connections is critical for optimizing the signal-to-noise ratio in
neuronal networks. Neuronal plasticity can be compared to auditions for a Broadway show:
if many candidates audition, the production team can select an optimal performer for each
role (and send those not suitable back home), but if only a few people show up, almost all
have to be utilized regardless of their talent.

During the past few years, neuronal plasticity, and in particular adult neurogenesis, has been
implicated in the beneficial effects of antidepressant drugs and electroconvulsive shock
treatment (ECS) [4–6][7]. However, it has remained unclear how plasticity and neurogenesis
impact mood and anxiety-related behaviors.

Here, we provide a framework for how chronic antidepressant drug treatment and ECS
might utilize neurogenesis and other forms of neuronal plasticity to influence mood. We
argue that antidepressants, environmental enrichment, and exercise increase structural
variability at various levels in the nervous system, thereby offering more substrates for the
selection process (Figure 1) [7]. Conversely, sensory deprivation and chronic stress would
reduce variability and impair adaptability. Whereas acute stress may promote variability and
adaptation, chronic stress is considered maladaptive and is associated with a loss of neurons
and synapses [8,9]. Furthermore, stress may increase activity in certain brain regions, such
as the amygdala and the mesolimbic dopaminergic system, leading to hypertrophy of these
structures.

We argue that chronic antidepressant treatments and ECS act - at least in part - by utilizing a
similar mechanism to increase adaptability and facilitate structural and functional
reorganization in neuronal networks that have evolved to boost the effects of environmental
enrichment, although the cellular and molecular mechanisms may be different. We further
suggest that the effects of enrichment and antidepressant treatments that increase plasticity
take place at many levels within neuronal networks (Figure 1). Because experience-guided
selection constantly eliminates inactive structures, an increase or decrease in variability does
not need to influence the mean number of these structures in brain (like counting the number
of actors of the final cast does not tell you how many have auditioned), which makes
detecting such a change in variability difficult. Therefore, it is currently unclear whether the
effects of antidepressants are confined to particular brain areas or whether they occur more
ubiquitously throughout the brain. Nevertheless, tougher competition between variable
structures increases adaptability towards changes in the external or internal milieu,
analogous to the way increased genetic variability contributes to the survival of a species
facing a changing environment in the context of evolution.

Neurogenesis in the dentate gyrus
Adult neurogenesis is an exceptional form of plasticity in which entire neurons are generated
and selected for survival in only a very few regions of adult mammalian brain [10]. The two
main areas where neurogenesis occurs are the subventricular zone that lines the ventricles
and gives rise to neuronal precursors that migrate toward the olfactory bulb, and the
subgranular zone that lines the dentate gyrus (DG) of the hippocampus and gives rise to DG
granule cells (Figure 2) [10].
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Neurogenesis is a plastic process that is regulated by environmental factors. In the
hippocampus, various stages of neurogenesis are stimulated by enriched environments,
exercise, learning, and antidepressant drugs, and they are inhibited by chronic stress and
aging [5,6,11]. Enrichment, antidepressants, and ECS stimulate the proliferation of neural
stem cells, their differentiation into neurons, and the survival of the resulting young neurons
(Figure 2) [4,12]. Conversely, both acute and chronic stress decrease proliferation and the
survival of the newborn neurons in several species, including nonhuman primates [13,14],
although increased neurogenesis has not been confirmed in all stress studies [13,14].
Newborn neurons have also been implicated in the adaptation to stress by buffering against
it [16]. Furthermore, sensory deprivation decreases proliferation, the choice of a neuronal
fate, and the survival of the young neurons [15]. These observations raise the possibility that
changes in neurogenesis allow for a better adaptation to a changing environment either
instructively by encouraging adaptive behavior [17] or permissively by increasing variability
that is then utilized in experience-dependent selection. However, it is also possible that
changes in neurogenesis are merely a consequence of these environmental changes. By
reviewing the proposed functions of adult-born neurons, we can attempt to resolve these
options.

Neurogenesis, pattern separation, and generalization
Recent functional studies of adult-born dentate granule neurons have focused on their
potential role in pattern separation because increasing evidence from electrophysiological
studies indicates that the DG is involved in pattern separation [18]. It has been proposed that
pattern separation enables the processing of similar experiences as distinct memories and is
critical for memory formation, although direct evidence for this mechanism is still missing.
For example, pattern separation may enable us to remember two distinct beach vacations or
where we last parked our car even though the parking garage and general context may be the
same each morning.

In a number of rodent models, both loss and gain of function studies show that increases in
neurogenesis improve, and decreases in neurogenesis impair, pattern separation [19,20].
Furthermore, some evidence exists indicating that young neurons are involved in
discriminating between complex odor mixtures in the olfactory bulb, which may involve a
process similar to pattern separation [21].

Pattern separation appears to be impaired both during normal aging and in individuals with
Mild Cognitive Impairment [22]. In addition, functional imaging studies have identified
abnormal activity in the dentate gyrus and CA3 of individuals with age related memory
impairments when they perform a pattern separation task [23].

In the psychiatric literature, the term pattern separation is rarely used because it refers to a
cognitive process that is usually not tested in psychiatric patients. However, generalization is
a phenotype that is often associated with anxiety and mood disorders [24]. Generalization
can be defined as our tendency to lump together similar experiences particularly when they
have a strong emotional content. For example the sight of a plane flying over a skyscraper
may remind us of 9/11. Generalization may therefore be considered the opposite of pattern
separation. Generalization is a double-edged sword: in small doses it is clearly protective to
avoid similar dangerous situations, for example, if you were hit by a car when you crossed a
dangerous intersection a little generalization will enable you to be careful each time you
cross this intersection; however, too much generalization may result in the fear to cross any
street, which would clearly be maladaptive. Like pattern separation, generalization may be
critical for memory formation because it may allow us to link similar memories rather than
store them in unrelated categories. In the cognitive domain, the process that allows
generalization is pattern completion, which has been proposed to take place in CA3 [25].
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Thus, when new memories are encoded two processes are simultaneously at work: pattern
separation to disambiguate similar situations and pattern completion (or generalization) to
link similar or related events, particularly when they have a strong valence. There is indeed
evidence that during memory encoding a balance between separation and completion allows
for similar experiences to be stored either together or separately. For example, from an
evolutionary point of view it is clearly important to store aversive memories together
because any experience that is similar to a traumatic memory should be avoided.

Therefore, the DG appears to function in different regimes in different environmental
situations. In a safe and rich environment, high pattern separation is advantageous because it
increases the ability to discriminate between similar experiences, which may be optimal for
a situation of high exploratory activity aimed at locating food and mates. In contrast, in a
dangerous environment low pattern separation or generalization may be preferable because
it will increase fear and promote avoidance rather than exploration [17,19].

The idea that variable levels of pattern separation have adaptive value raises the possibility
that variable levels of neurogenesis may promote adaptation to a changing environment. The
mechanisms through which increased neurogenesis contributes to pattern separation are still
unclear (Box 1), but the fact that a major period of cell death occurs around the time that the
neurons have established both pre and postsynaptic contacts suggests that the ability to
contribute to the activity of the dentate gyrus is critical. This further suggests that adult
neurogenesis may select the surviving neurons using principles similar to those that have
been thoroughly investigated in the context of peripheral nervous system development.
During early development, sensory and sympathetic neurons are produced in excess, and
when their axons reach their target tissues, newborn neurons compete for access to a
neurotrophic factor produced by the target cells. Those neurons that establish an optimal
connection with the target cells receive a sufficient amount of the trophic factor and survive,
whereas those that fail to optimally innervate the target are eliminated by programmed cell
death [26,27].

Box 1

Outstanding questions

The hypothesis that increase in structural variability induced by enrichment and
antidepressant treatments promotes adaptability after activity-dependent selection is
largely based on information derived from experiments performed in the peripheral
nervous system and in primary sensory systems. Several important questions remain to
be addressed before these principles can be extended to the higher cortical regions, such
as those involved in the regulation of mood. These questions include:

• Do antidepressants and enrichment promote synapse turnover in higher brain
regions, such as the prefrontal cortex or the hippocampal CA1 area?

• If enrichment and antidepressant treatments enhance variability, does this
promote adaptability in mood-related behavior?

• Are the effects of antidepressants confined to particular brain areas or do they
occur more ubiquitously throughout the brain?

• What mechanisms select newborn neurons for survival?

• Enrichment and antidepressants reactivate critical period-like plasticity in the
adult visual cortex in rodents, but do they produce similar reactivation in the
human brain?
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It is conceivable that a similar principle of redundancy and competition governs the
selection of surviving neurons in the mammalian dentate gyrus, where neurogenesis
continues into adulthood and where neuronal production, selection and elimination are
continuously taking place. Although the hypothetical target-derived neurotrophic factor for
the newborn DG neurons has not been identified, this factor should be regulated and
released in an activity-dependent manner [28]. Indeed, brain-derived neurotrophic factor
(BDNF), one of the prime candidates for this function, is regulated by neuronal activity [29].
We propose that when environmental conditions are changing, a newborn DG neuron with a
slightly different activity pattern, reflecting different patterns of sensory input, has a higher
probability to be selected for survival than newborn cells displaying activities very similar to
the neurons that already exist in the mature DG. This idea is consistent with the increased
survival of newborn neurons in an enriched environment. At least in the case of
antidepressant treatment, there is evidence that increased survival of newborn neurons is
balanced by an increase in the total number of apoptotic neurons within the DG, suggesting
that although the newborn neurons are surviving, older neurons are eliminated [30].
Analogously, a Broadway producer planning for a new show looks forward to a large
number of auditionees with diverse talent to replace at least some members of the current
cast, even if the current cast had been excellent in the previous show. Therefore, when the
input to the DG is variable, enhanced neurogenesis may be beneficial because it favors
pattern separation.

Neurogenesis and antidepressant action
Plasticity that is based on neurogenesis operates on a different time scale than traditional
forms of plasticity, such as spine or dendritic rearrangements that can occur much faster than
the generation of new neurons. If variable levels of neurogenesis have an adaptive value it is
likely to be in response to long lasting environmental changes such as those resulting from
changing seasons. For example, neurogenesis varies in the hippocampus of birds that store
food in hidden caches for retrieval in the winter. In these birds, neurogenesis is highest in
the fall and winter when they hide and retrieve their food [31]. Similarly, treatments that
increase neurogenesis are unlikely to produce a rapid behavioral response. This may be one
reason why antidepressants have a delayed onset of therapeutic effect.

Evidence from animal models of anxiety and depression indicate that neurogenesis is
necessary for some but not all effects of antidepressants [32,33]. Given the role of
neurogenesis in pattern separation, we hypothesize that an improvement in pattern
separation, particularly for situations and contexts that are emotionally charged, will impact
mood and anxiety-related behaviors. Such an effect may be achieved by connections
between the ventral hippocampus and the limbic system [34]. Unlike the dorsal part of the
hippocampus that sends projections primarily to association cortices, the ventral
hippocampus also sends projections to the amygdala, bed nucleus of stria terminalis,
hypothalamus, and prefrontal cortex (PFC). In the PFC, projections from the ventral
hippocampus have recently been shown to activate neurons that fire in response to anxiety-
related modalities [35]. It is therefore possible that a particular context acquires a valence by
virtue of the connections between the ventral hippocampus and the limbic system.

The process of neurogenesis may be harnessed to improve cognition and mood. A recent
study demonstrated that inhibition of apoptotic cell death from the progeny of hippocampal
neural stem cells significantly increases neurogenesis and improves pattern separation [36].
Interestingly this genetic manipulation had no impact on anxiety-related behaviors unless it
was combined with exercise, which is consistent with the idea that enhanced survival
benefits from the increased variability provided by exercise-induced precursor proliferation.
Future studies in animal models are needed to investigate whether the combination of
strategies aimed at stimulating neurogenesis (by inhibiting cell death or other means),
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together with behavioral enrichment or exercise, will result in antidepressant or anxiolytic-
like effects.

Plasticity outside the DG
Increasing evidence suggests that enhanced neuronal plasticity induced by enrichment and
chronic antidepressant treatment may not be restricted to neurogenesis (Figure 1).
Furthermore, the mechanisms that mediate the effects of these treatments at smaller
structural scales may be conceptually similar to those reviewed above for neurogenesis.
However, technical limitations have hampered the recognition of these effects; it is difficult
to detect changes in turnover of dendritic branches and spines when there are simultaneous
changes in the rates these structures are produced and retracted without any change in the
net number of structures. Therefore, it is currently unclear whether the effects of
antidepressants are confined to mood-related circuits or are more widespread (Box 1).
Nevertheless, at least in primary sensory areas, a change in turnover has significant
functional consequences [37,38]. Developments in intravital microscopy of behaving
animals is now circumventing these technical difficulties, and an increasing number of
reports have focused on the dynamic effects of environmental manipulation on the structure
of dendrites and axons [39,40].

Axonal and dendritic branches
It has been proposed that the construction of neural circuits proceeds through concurrent and
nearly balanced growth and retraction of axonal and dendritic branches [3,41–43]. Nascent
dendritic branches have been proposed to produce “trial synapses”, and only those trial
synapses that receive appropriate synaptic input are preserved and the corresponding
dendritic branch is stabilized [3]. Therefore, activity-dependent synapse stabilization appears
to direct axonal and dendritic arbor selection and elimination (Figure 1).

There is evidence that antidepressant treatment and ECS increase the variability and
turnover in the braches of dendrites and axons (Figure 1). Chronic fluoxetine administration
simultaneously increases the elongation and retraction of branch tips in the mouse visual
cortex [40] and ECS promotes axonal sprouting in the hippocampus [44], consistent with the
idea that antidepressants increase variability in branch dynamics. Conversely, chronic mild
stress has been shown to reduce volume as well as length and branching of apical dendrites
within the DG, CA3 area, and the PFC in rats [45]. All of these effects were reversed by
antidepressant treatment [45].

Synaptic connections
During early postnatal development, the density of synapses in the human cortex exceeds
that found in adult brain by about twofold [46,47]. Although brain growth contributes to
reduced spine density, it is thought that a net loss of synapses brings the synaptic density to
adult level at adolescence. At least in the human PFC, synaptic pruning continues well into
the 3rd decade [47]. It has been proposed that synaptic activity selects from the
overproduced synapses those that are stabilized [2]. This activity-dependent process ensures
that only those synapses that optimally represent external or internal input are retained and
that those mediating random noise are eliminated [3,42].

Even in adulthood, synaptogenesis continues at a lower level, but if synaptic elimination
occurs at a matching rate, the net number of synapses remains stable. Evidence from sensory
cortices suggest that a simultaneous increase in spine formation and retraction increases
adaptability by making a higher number of trial contacts available for selection (Figure 1)
[40,48,49], as when a larger number of auditionees helps in selecting the optimal cast for a
show. In higher cortical areas, evidence for a correlation between increased synapse
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turnover and improved function is lacking, due at least in part to technical difficulties (Box
1). It is possible that currently available methods underestimate the dynamic changes in the
turnover of synaptic contacts that may take place after environmental changes or
antidepressant drug administration (Figure 1C).

ECS increases the number of synapses in the hippocampus, but antidepressant treatment has
only a minor effect on the net number of dendritic spines in the hippocampal CA1 area
[50,51]. However, when the number of spines and synapses is abnormally downregulated by
stress [52] or ovariectomy [53], the increasing effect of antidepressants on spine number
becomes unmasked and fluoxetine treatment increases spine number back to the baseline
level. This suggests that in normal hippocampus fluoxetine might simultaneously increase
spine formation and elimination, thereby having only a minor effect on the net number of
spines, but fluoxetine may produce this effect also indirectly through other mechanisms. A
recent study that observed dendritic contacts repeatedly using 2-photon microscopy in the
mouse visual cortex reported that chronic fluoxetine treatment simultaneously increased the
elongation and retraction of dendritic branch tips [40].

Chronic stress and long-term glucocorticoid treatment leads to the loss of dendritic spines
and synaptic contacts in the hippocampus and the PFC [8,54–56]. Chronic mild stress also
increases the number of immature spines at the expense of mushroom-like mature spines in
the apical dendrites of pyramidal neurons in the hippocampus and PFC, and these changes
are largely reversible by antidepressant drug treatment [45]. A recent study reported that
short-term glucocorticoid treatment increased spine dynamics in the mouse somatosensory
cortex by simultaneously increasing spine formation and retraction and that inhibition of
endogenous glucocorticoids reduces spine dynamics [9]. Consistent with earlier findings,
long-term glucocorticoid treatment increased net spine elimination.

Plasticity of synaptic strength
In addition to synapse number, synaptic strength is also dynamically regulated by
environmental experiences, including enriched environment, exercise, and antidepressant
drugs. Chronic fluoxetine administration increases long-term potentiation (LTP) in the DG
elicited in the absence of GABAA receptor (GABAAR) inhibitors, and this effect depends on
the newborn neurons [12]. In the presence of GABAAR inhibitors, DG LTP is reduced,
perhaps due to occlusion, and long-term depression (LTD) is enhanced [12,57,58].
Enrichment and fluoxetine enable LTP in the adult rat visual cortex [48,59], and a similar
effect of fluoxetine treatment on LTP was observed in the murine amygdala [60]. These
findings may be related to the “dematuration” process observed after chronic fluoxetine
administration in the dentate granule neurons [58], indicating that antidepressant treatment
reactivated a juvenile-like plasticity in brain [48,60]. Enriched environment and perhaps also
fluoxetine treatment during early life accelerate cortical maturation [61–63]. Conversely,
chronic mild stress facilitates LTD in the CA1 area and chronic antidepressant treatment
blocked this LTD facilitation and enhanced LTP [64]. Thus, chronic antidepressant
treatment and enriched environment may increase synaptic plasticity in several brain areas
(Figure 1), which may be consistent with the increased dendritic spine dynamics and
turnover induced by antidepressant treatment [40].

Genomic plasticity
The regulated expression and translation of specific genes by experience-dependent
neuronal activity is a critical mechanism of neuronal plasticity [65–67]. Neuronal activity
can influence gene expression by activating transcription factors or by inducing epigenetic
changes in chromatin structure or DNA methylation [68–73] (Figure 1). Mutations in several
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genes regulated by activity are associated with neurodevelopmental disorders, which
underlines the critical importance of this process for proper network connectivity [65,66].

BDNF is a critical mediator of neuronal activity and synaptic structure [74,75], and the
production and release of BDNF is regulated by neuronal activity [74]. BDNF signaling
through TrkB receptors promotes the survival of newborn neurons in the DG [30,76,77],
enhances the outgrowth of axons and dendrites [43,78], stabilizes synapses, and promotes
synaptic transmission [79,80]. The effects of enrichment and antidepressant drugs are at
least partially mediated by BDNF signaling [30,48,77,81,82], although in brain areas that are
activated by aversive stimuli, BDNF has pro-depressive effects [83]. Thus, the activity-
dependent regulation of BDNF is a critical molecular mediator through which experience-
dependent plasticity is translated into structural and functional changes in neuronal
networks. If this were a Broadway show, BDNF would be a producer that selects actors and
actresses for the cast from among the auditioning candidates.

Recent experimental and theoretical work suggests that environmental conditions may have
relatively small or variable effects on the expression of individual genes, but they reliably
increase the large-scale variability in gene expression, or the “genomic tone” [84,85]. High
local variability in the DNA methylation rate without any change in the mean methylation
level was recently discovered within variably methylated regions of genomes from several
species [86] and may provide a mechanism for changes in the genomic tone [85]. This
altered variation in methylation and gene expression without any change in the mean
resembles the increase in structural variation and turnover in neurons and synapses
discussed above, but it is not clear whether and to what extent the genome-level variation is
causally related to variation in network dynamics. However, variability in gene expression
levels does correlate with behavior [84]. Intriguingly, genes adjacent to the variably
methylated regions have often been found to be functionally related to brain development
and plasticity, even if the tissue analyzed was liver [86]. This suggests that variably
methylated regions are associated with many genes involved in neuronal plasticity, which
may induce variability in their expression levels throughout the organism.

The visual cortex as an example of experience-dependent plasticity
Critical period plasticity in the mammalian visual cortex is a well-characterized model for
cortical development and plasticity [37,38,87,88] (Figure 3). It is widely thought that similar
processes govern the development and tuning of neuronal connectivity in other cortical areas
as well [1,88]. Recent studies have revealed that critical period-like plasticity can be
reactivated in the adult visual cortex by a number of treatments, including enrichment and
chronic fluoxetine treatment (Figure 3D) [40,48,59,62,89,90].

Reactivation of developmental plasticity in adult brain is apparently not restricted to the
visual cortex. Chronic fluoxetine treatment induces a dematuration of neurons in the mouse
DG that extends to the already matured granule neurons [58]. A recent study used the fear-
conditioning paradigm to show that chronic fluoxetine treatment increases neuronal
plasticity in the amygdala and leads to the long-term removal of conditioned fear response
when fluoxetine treatment is combined with extinction training; neither fluoxetine treatment
nor extinction training alone produced a long-term fear removal [60]. These findings
demonstrate that enriched environment or fluoxetine treatment in adult animals reactivates a
critical period-like plasticity, which facilitates the reorganization and functional recovery of
a network miswired during development.
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Conclusions
Taken together, we suggest that plasticity-inducing treatments, such as exercise, enrichment,
or chronic antidepressant treatments increase variability at several structural levels of the
nervous system. At all levels, new neurons or new synapses are produced in excess and
compete for survival or stabilization. Neurons and synapses that contribute to the activity
within neuronal networks are selected for survival and this experience-dependent
competition guides the network structure to better represent the external and internal milieu.
These data suggest that the combination of enrichment or fluoxetine treatment together with
rehabilitation could be useful in a number of conditions where the activation of adult
plasticity would be desired. Indeed, recent studies have shown the usefulness of
antidepressant treatment for recovery from stroke in humans [91], as well as in animal
models of Alzheimer’s disease [92,93] and traumatic brain injury [94]. For the treatment of
depression, the data reviewed above suggest that the antidepressant treatment is effective
only when combined with rehabilitation, such as psychotherapy. Clinical trials testing the
necessity of rehabilitation in the antidepressant effect should be designed, and the
combination of antidepressants and psychotherapy, which is recommended by treatment
guidelines but too often not followed in clinical practice, should be promoted.
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Figure 1. Proposed model for the levels of neuronal plasticity in antidepressant activity
Neuronal plasticity acts at different structural levels and bidirectionally to influence
variability and selection within neuronal networks. Increased formation of structures at any
of these levels by, for example, environmental enrichment (EE) or chronic antidepressant
treatment, generates variability and promotes competition between similar structures for
stabilization, thereby enhancing adaptability, even if the total number of structures is not
increased due to the simultaneous increase in structural elimination. 1. Neurogenesis and
selective apoptosis. Increased precursor proliferation in the dentate gyrus, induced by
antidepressants and EE, leads to the increased survival of newborn neurons that successfully
mediate activity within the hippocampal circuitry. Neurons that fail to functionally integrate
into the hippocampal circuitry are eliminated through apoptosis. 2. Arborization and pruning
of axonal and dendritic branches. The increased dynamics of nascent branches promotes the
stabilization of branches containing synapses that successfully represent environmental
conditions, whereas arbors without active synapses remain short-lived and are pruned. 3.
Synaptogenesis and synaptic elimination. Immature “trial synapses” between two neurons
are initiated by filopodial extension from pre- or postsynaptic sites. Synapses that are
successfully activated during the trial period are preferentially selected for stabilization,
whereas contacts that fail to mediate activity collapse and are eliminated. 4. Plastic
regulation of synaptic strength. Information transfer through active synapses is potentiated
through the process of long-term potentiation (LTP), whereas inactive or inappropriately
active synapses are suppressed through long-term depression (LTD). 5. Environmental
activity regulates the transcription and translation of effector genes involved in neuronal
plasticity through transcriptional control and epigenetic mechanisms, such as remodeling of
chromatin structure from a closed to an open state.
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Figure 2.
Effects of mood and environment on pattern separation and generalization. Information
processing within the trisynaptic loop of the hippocampus [dentate gyrus (DG) => CA3 =>
CA1] is required for the discrimination between similar contexts. This process is termed
pattern separation and is modulated by adult neurogenesis within the dentate gyrus (red
boxes). Through different connectivity of the dorsal and ventral hippocampus (association
cortices versus amygdala, bed nucleus of stria terminalis (BNST), prefrontal cortex, and
hypothalamus), both neutral and emotionally charged contextual information is processed
and discriminated. When adult neurogenesis is reduced or blocked by stress, aging, or
experimental manipulations (such as X-ray treatment), discrimination is impaired, leading to
generalization [17,19]. In contrast, increased neurogenesis, promoted by environmental
enrichment, antidepressant treatment, or genetic manipulations (eg. Bax inhibition),
improves pattern separation and discrimination [19,36]. Amyg, amygdala; BNST, bed
nucleus of stria terminalis; PFC, Prefrontal cortex; Hypoth, hypothalamus; Antidep,
antidepressant treatment.
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Figure 3.
Plasticity of neuronal networks in mammalian primary visual cortex. A) Soon after eye-
opening, inputs that mediate visual information from the left (blue) and right eye (red)
diffusely innervate the entire layer IV of the primary visual cortex. B) During the postnatal
critical period (CP), activity-dependent competition leads to the segregation of inputs from
either eye into eye-specific regions, the ocular dominance (OD) columns. As a consequence,
at the end of critical period, cortical neurons within a single column in the layer IV receive
innervation predominantly from a single eye (middle panel). This segregation requires
vision-induced neuronal activity such that axonal branches from one eye withdraw from the
regions initially dominated by the other eye and elaborate connections in the own territory
(lower panel). It should be noted that the OD columns cannot be detected in the primary
visual cortex as any visible structures, even though they are differentially colored in the
figure for the sake of clarity. C) Development of a normal network requires balanced use of
both eyes. If one eye is deprived of vision during the critical period, the inputs mediating
information from it lose in activity-dependent competition and withdraw [38]. The inputs
mediating visual information from the open eye are active and overcome most of the visual
cortex. If the vision of the deprived eye is not corrected and encouraged during the critical
period, the network guided by only one open eye remains permanent even if the deprived
eye was opened in adulthood. D) Fluoxetine treatment (Flu)[48], or exposure to an enriched
environment in adulthood [59], reopens the critical period-like plasticity. This enables a
reorganization of the network, if the deprived eye is opened in adulthood and encouraged by
a temporary patching of the previously open eye. Under these conditions, the now more
active deprived eye can regain territories within the layer IV, which gradually leads to a
normal network guided by two open eyes. Note that under all these conditions, the net
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number of synapses remains constant (lower panel), only the source of visual information
varies.
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